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1 FOREWORD

In this project, a novel control technique, referred to as Closed Loop Vibrational Control,

has been developed and applied to the problem of fuselage vibrations suppression in helicopter

dynamics. From the theoretical standpoint, the technique developed is applicable to systems

where the control input enters the open loop dynamics as an amplitude of a periodic, zero

average function, and this amplitude can be chosen to depend on the system's outputs. An

example of such a system is the helicopter with Higher Harmonic Control (HHC) where periodic

feathering of rotor blades around a fixed pitch angle is introduced in order to suppress the

fuselage vibrations. From the practical standpoint, the technique developed is useful for plants

where conflicting control objectives must be achieved with an insufficient number of actuators.

From this perspective, the technique developed is based on the frequency separation, i.e. the

utilization of low and high frequency control signals so that, on the average, all control objectives

are satisfied. In the HHC case, this frequency separation amounts to low frequency rotor blades

pitch angle control to ensure the desired altitude of the hovercraft and the high frequency rotor

blade pitch angle control to suppress the fuselage vibrations.

For systems with this structure, the following problems have been solved and are reported in

this document:

1. Conditions for the state and dynamic output-feedback stabilizability by closed loop vibra-

tional control have been derived.

2. Pole placement capabilities of vibrational controllers have been investigated.

3. Stability robustness of closed loop vibrational control has been analyzed.

4. Youla-type parametrization of closed loop vibrational controllers have been derived and

1



utilized for the design purposes.

5. A method for H2-optimal zeros placement has been developed.

6. The results obtained have been applied to helicopter vibration suppression problem and a

technique referred to as Very High Harmonic Control (VHHC) has been investigated.

In short, the main result can be formulated as follows: A novel control technique has been

developed and its utility in helicopter vibrations suppression has been demonstrated.
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4 STATEMENT OF THE PROBLEM

The goal of this thesis is the development of a control theory for a class of dynamical systems
described by the following equations:

t
i(t) = Ax(t) + Bu(t)f(-). t0.1

y(t) = Cx(t),
f(r) = f(r + T) , T #. 0

1IT
f(r)dr =0,

0< f< 1,

where x E 1R' is the state, y E BR is the output, u E BR is the control, f(t) is a periodic,
average zero scalar function, and f is a small positive parameter. Stabilizability properties of
system (0.1) with state and output feedback are analyzed and the pole placement capabilities
investigated. A characteristic feature of system (0.1) is that the control, u, enters the open
loop dynamics as an amplitude of a periodic, zero average function. Such situations arise in
a number of applications where two conflicting control goals have to be accomplished by a
single actuator. For instance, in the helicopter control problem, a single actuator (the blades'
pitch angle) is used to ensure both the desired altitude and the fuselage vibration suppression.
These goals are conflicting in the sense that if the pitch angle is chosen to ensure the desired
altitude, the fuselage vibrations are not suppressed; if the pitch angle is used to suppress the
fuselage vibrations, the desired altitude is not attained. In order to accomplish the two goals
simultaneously, a frequency separation approach may be employed. Specifically, a low frequency
control may be used to stabilize the desired altitude and a high frequency, average zero control
may be used to suppress the vibrations without compromising the first goal. When the control
loop is closed with respect to the low frequency control, the equations have the form of system
(0.1), and the goal is to choose the control, u, as a function of x or y so that the resulting system
has the desired dynamical properties.

In particular, the above ideology has been successfully implemented in the Higher Harmonic
Control (HOC) of helicopters, where periodic feathering of rotor blades around a fixed pitch angle
is introduced in order to suppress the fuselage vibrations. Helicopter vibration is a long standing
problem. Recent experiments [11-15] have shown that HHC may lead to an order of magnitude
reduction in fuselage vibrations. The primary difficulty in implementation of the HHC systems is
the complex interaction between inertia, structural and aerodynamical hub shears and moments
for HHC-equipped helicopter rotors. These interactions, which are difficult to predict due to
the highly complex dynamics of most helicopter systems, account for the extreme sensitivity of
HHC efficacy to proper magnitude and phasing of the HHC inputs. Using the idea of closed
loop vibrational control, we will explore alternative means of suppressing the vibratory airload
without the phase dependencies in the input.

It is well known that unavoidable discrepancies between mathematical models and real-world
systems can result in the degradation of control system performance. Thus, w( also investigate
the property of stability robustness for system (0.1). Both synthesis and analysis problems are
addressed. In the synthesis problem, it is assumed that (0.1) is the nominal plant, whereas the
true plant is defined by

.i = (A+AA)x+Buf.) , (0.2)
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where AA is the perturbation matrix. Given the perturbation matrix AA., we derive a condition

which guarantees the existence of a controller

u = K , (0.3)

which robustly stabilizes the uncertain system (0.2). In the analysis problem, we determine a
bound on AA which ensures that a controller (0.3) which stabilizes the nominal plant (0.1), also
stabilizes the perturbed system (0.2).

We also investigate the parametrization of stabilizing controllers for the system (0.1) since
such a characterization could be quite useful, e.g. to satisfy desired performance specifications
[6]. We first consider the observer-based output controller, K,,o,,, defined by

= Ai + Buf + L(y-•), (0.4)

K
U =C

and parametrize all stabilizing controllers for (0.1) in the class of rational transfer functions. Next,
the parametrization of the averaged closed loop transfer function resulting from a stabilizing
output feedback controller is derived.

Finally, since periodic controllers are known to relocate control loop zeros [71, we give a
solution to the zero placement problem for open and closed loop system and characterize control-
theoretic properties of the resulting system. In this thesis, we treat the above problem by
considering a linear time-invariant SISO system of the form

S= Ax(t) + Biu(t) + B 2w(t) , (0.5)
y(t) = Cx(t) , z E W",u,w, y E IR.

In the design stage of the system (0.5), when no actuator positioning and disturbance protection
measures are yet finalized, input vectors B1 and B2 and output vector C may be viewed as free
parameters to be chosen so that appropriate performance specifications are satisfied. Among
these, it seems reasonable to require that the transmission from the control u to the output y be
maximized and the transmission from the disturbance w to y be minimized. Since a choice of
B1 and B2 defines, for a given A and C, the system's zeros, the problem of choosing B1 and B2
also defines the zeros of the system (0.5). The purpose of this research is to give a solution to
the zero placement problem for open and closed loop system and characterize control-theoretic
properties of the resulting system. Note also that although the problem of optimal pole placement

as received enormous attention during the last 30 years, that of optimal zero placement has
been relatively neglected in control systems research. This latter problem could however be of
substantial importance not only in the context of vibrational control but also in the placement
of actuators and sensors since the latter determines the input and output vectors of the linear
model (0.5) [8]-[101.
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5 SUMMARY OF THE MOST IMPORTANT RESULTS

5.1 PART 1. STATE AND OUTPUT FEEDBACK STABILIZABILITY AND
POLE PLACEMENT CAPABILITIES

5.1.1 INTRODUCTION

In this part of the report, we develop a control theory for a class of SISO dynamical systems
described by the following equations:

i(t) = Ax(t) + Bu(t)f (D (1.1)

y(t) = CX(t),
f(t) = f(t + T), T O,

Jf(t)dt = 0,

where A E RFfI Xn,B E IRxl,XC E Rlxn, f(t) is a periodic, zero average scalar function, and ( is
a small positive constant. A characteristic feature of this problem is that the control, u, enters
the open loop dynamics as " amplitude of a periodic, zero average function. Such situations
arise in a number of applica, ons where two conflicting control goals have to be accomplished by
a single actuator. For instance, in the helicopter control problem, a single actuator (the blades'
pitch angle) is used to ensure both the desired altitude and the fuselage oscillations suppression.
These goals are conflicting in the sense that if the pitch angle is chosen to ensure the desired
altitide, the fuselage oscillations are not suppressed; if the pitch angle is used to suppress the
fuselage oscillations, the desired altitude is not attained. In order to accomplish the two goals
simultaneously, a frequency separation approach may be employed. Specifically, a low frequency
control may be used to stabilize the desired altitude and a high frequency, average zero control
may be used to suppress the vibrations. When the control loop is closed with respect to the low
frequency control, the resulting equations have the form of system (1.1), and the goal is to choose
the control, u, as a function of x or y so that the system has the desired dynamical properties.
This ideology has been implemented in the Higher Harmonic Control (HHC) of helicopters, where
periodic feathering of rotor blades around a fixed pitch angle is introduced in order to suppress
the fuselage vibrations.

Another example is the periodic operation of chemical reactors [19]. Here again the problem
is to choose the amplitude of input flow vibrations so that the closed loop system behaves as
desired.

In order to simplify the analysis and obtain constructive results, following [11]-[17], we assume
that the periodic function f(t) is of high frequency as compared with the dynamics of i = Ax.
Formally, this means that function f has the asymptotic form f(1), where e > 0 is sufficiently
small. Thus, more precisely the problem addressed in this part of the report is as follows:

Given system (1.1), determine under what conditions there exist K E IW", L E WC'", and
co < 1 such that for all c < co, the closed loop system composed of (1.1) with the time invariant
state space controller

U = K , (1.2)

8



or a time invariant output controller

X = A- + Buf + L(y-•) (1.3)

S= Ci.

K.
U = -X

is asymptotically stable. The state feedback gains of (1.2), (1.3) are restricted to be time invariant
for reasons of practical implementation. Problem (1.1), (1.2) is considered in Section 5.1.2 and
problem (1.1), (1.3) is discussed in Section 5.1.3. In addition, we characterize the pole placement
capabilities ensured by closed loop vibrational control and present the corresponding results in
Section 5.1.4. To illlustrate the results, in Section 5.1.5 we consider an example inspired by a
helicopter with HHC.

5.1.2 STATE SPACE FEEDBACK

In this section, we present the result for stabilization of the system (1.1) with state space
feedback (1.2).

Theorem 1.1: There exists a K E R"lX' and an 6o > 0 such that for all 0 < E < 60
system (1.1), (1.2) is asymptotically stable if only if (A, B) is stabilizable and the sum of all the
controllable eigenvalues of A is negative.

Proof: Necessity is proved by the following considerations. Represent the state space
model (1.1) in Kalman canonical form,

:i AC A12 [ ] +[ BB]juf( t ) (1.4)

where the pair (Ac, B 1) is controllable. Since Ac is not affected by feedback, the stabilizability
of (A, B) is necessary.

The stability of xz, with xc(0) = 0, is governed by the following equation:

ac , XC E+ R m U uE1IR . (1.5)

Introducing a state feedback u = Kxc/c, we obtain

,c= [c+Bi K (1.6)

Since (1.6) is periodic, there exists a Lyapunov transformation which reduces (1.6) to an equation
with constant coefficients,

z=Az,

preserving the stability property. From the Jacobi-Liouville theorem [13],

Tj Tr [Ac+B BKf(!)dt= TrA,

9



where T is the period of f(t/c). Thus.

Tr A, = Tr A

where Tr A, is equal to the sum of all the controllable eigenvalues. Therefore. Tr A. < 0 is
necessary and this completes the proof of necessity.

Suffiency is proved as follows: Consider (1.4) and assume that all the eigenvalucs of A,, have
negative real parts. Without loss of generality, assume that (1.5) is in the controller canonical
form, i.e.:

where

0 1 ... 0 0

AC= 0 0 ... I B1 = 0

-am -am-i ... -a 1  1

and a, are the coefficients of the characteristic polynomial of matrix A,. Apply state feedback

U =" •XC L- ... ( 0 1.7)

where ki - 1, i=2, ... , m. The closed loop system is

X, = Acxc+ -BKf (1.8)

The generating equation, (17], for this system has the form

d--, = B, Kf(,r)xc, (1.10)
dTr

where 7 = t/',. The general solution of (1.10) is

Xe =

where EI(r) is a fundamental matrix for BKjf(7-) and xc0 is a constant. Consequently, introducing
the substitution

x, = 4(r)ý = h(r,

we obtain the following equation in Bogoliuboff's standard form [211:

__ A] r -1f- X, (t, h(T,))(. )

- ¢-' ()AoI(r .

10



Applying the averaging principle [21], we obtain the following averaged equation

where

0 1 0

(1.13)
- (C') CC/ () =0 0 ... 1 ' (.3

-a[ , - k2kml -am,- - k2k1-l• _ al

~~(~f (ffr)dT,
and bar denotes the averaged value, i.e. 0(r) = 1/T for/3(r)dr. Let Ao,... I Ao,, be the open loop
eigenvalues of (1.5) and choose the closed-loop eigenvalues A A,..., A, of (1.12) as follows:

I M

A, = -m. Ao, + j Im Ao, (1.14)

Then the state feedback gains (1.7) can be found to be

__(a,, - a,)
ki = (a. - aI) i = 2,...,m(.5

where ac, ac. are the coefficients of the closed loop characteristic equation corresponding to.11,... , I A *.

The control gains (1.15) guarantee the asymptotic stability of the averaged system (1.12). As
it follows (17 , if (1.12) is asymptotically stable, there exists co > 0 such that for all 0 < c < co
equation (1.6) is also asymptotically stable. This proves the sufficiency. Q.E.D.

Corollary 1.1: Assume that the sum of the controllable eigenvalues of A in (1.1) is
positive, then there exists an fo such that no dynamic state feedback of the form

ý = Fv+Gx , (1.16)
1

u = -[Hv+Jx]

will stabilize the system (1.1) whenever 0 < c < co.
Proofh The resulting closed loop equations with the dynamic state feedback controller

(1.16) are:

i = Ax+B HLVf(!+ B iXf(

v = Fv+Gx.

In fast time r = t/O, the above equation becomes:

[•1_ = [ EA+BJf(r) BHf~r)J] F (1.17)

liIV cG F V1.7



Let 4b(r) be a fundamental matrix for BJf(-r). Define

W = j t(r - q)BHf(q)dq.

and the substitution

v(r)]=[ 0 I

Using the above substitution, we obtain

A111 A~ - ýD1 WG4D ýD'AW - 4ý'WGW - 4"'WF(1)
1,,, G4DGW+F

which is an equation in the standard form [21]. Introduce the following Lyapunov transformation

z2(t) I0•(t)

which will preserve the stability of (1.18), yields

Applying the averaging principle [21], we obtain

Thus the eignevalues of the averaged closed loop system are the union of those of -1 AD and F.
It follows from Theorem 1.1 and the averaging principle [211, that if Tr A > 0, there exists an co
such that the closed loop system (1.1), (1.16) will be unstable whenever 0 < E _< cE. Q.E.D.

5.1.3 OUTPUT FEEDBACK

This section deals with the problem of stabilizing system (1.1) with an output feedback (1.3).
Theorem 1.2: There exists a K E RX"',L E Rr'l, and an co > 0 such that for all

0 < c < f0 the system (1.1), (1.3) is asymptotically stable if and only if (A, B, C) is stabilizable
and detectable and the sum of the controllable eigenvalues of A is negative. The separation
principle holds, i.e. the choice of K and L can be carried out independently.

Proof: Necessity is proved by the following considerations. Consider the observer,

S= Ai + Buf + L(y - C- )

and the feedback law

KU = -" X .

The dynamical equations for the closed loop system are:

12



A Bjf 1 x[] [ ( LC+ f31x] (1.19)
S= LC (A4- LC)+B f f

Defining the observation error e = x - i. we obtain the following equivalent dynamical equations:

(A -LC) I [ I]
Thus, the stability of the closed loop system depends on those of A+ (1/e)BKf(t1f) and A - LC.
Using the results of Theorem 1.1 completes the proof of necessity.

Sufficiency is proved as follows: Consider system (1.1) with (A, B, C) stabilizable and de-
tectable. In fast time r = t/f, the resulting closed-loop equations with output feedback (1.3)
are:

E•, = cLC E(A- LC) + BKf(r) i(

Let P(r) be a fundamental matrix for BKf(7). Define

,()= 4- 1 (T)A4(T),

and the substitution

x(r) 1 [I BK fo(q)f(q)dq [(T):i(r) =[ BK o N() I I W(r)I,

Using the above substitution and following the proof of Theorem 1.1, we reduce (1.20) to the
standard form [21] and apply the averaging principle to obtain the following averaged equations:

[ [A +TLC -LCT i- A +LC -TLC] ] (1.21)

To simplify (1.21), introduce the following transformation

which yields

[Z2 L~ 0 iA-LC+ILC 2ji (1.22)

Using a construction similar to that of (1.10)-(1.12), one can compute the state feedback gain
required to stabilize f, and assign all the eigenvalues of A - LC through the choice of L so that
the asymptotic stability of (1.21) is guaranteed. As it follows [17), if (1.21) is asymptotically
stable, there exists an f0 > 0 such that for all 0 < e < f- equation (1.19) is also asymptotically
stable. Q.E.D.

13



5.1.4 POLE PLACEMENT CAPABILITIES

Consider again system (1.1) with feedback (1.2) and assume that

where k/ ,-' 1, i = 1,..-.,n. Thus, the closed loop system is

As it is shown in [171 and (1.12), this equation can be reduced to the averaged equation,

(A B (1.24)

where

x(r) =

.(r) is a fundamental matrix for BKf(r) and r = t/E. As it follows from [17) and [21], (1.23)
is asymptotically stable for sufficiently small E if the averaged system (1.24) is asymptotically
stable. Matrix R which, along with matrix A, defines the stability of (1.24) can be characterized
as follows:

Theorem 1.3: Assume A and B are in the controller canonical form. Then there exists
f- such that for all 0 < c < co, matrix B of (1.24) has the form:

0 ... 0 0

= 0 ... 0 0 (1.25)

and
00 2 k2 ki

where a, s 1, 2,..., are the Fourier coefficients of f(r), i.e.

00

f(r) - a, sin(sr + (p.)

Proof: Follows directly from Theorem 3 of [13].

Denote the characteristic polynomials of A and (A +W) of (1.23) and (1.24), respectively, by

Po(s) = sn + a1os-' 1 + a2osn 2 + .- + ao, (1.26)
p(s) = sn +asn- 1 + a 28n-2 +. +a, . (1.27)

It follows from Theorem 1.3 that

a, alo , (1.28)
a 2  _ a20 , (1.29)

14



Im X

D~a, a

Re•X

Figure 1.1: Sector region D(o,w)

and aj, 3 < j <_ n, can be arbitrarily assigned. Below we analyze to what extent the constraints
(1.28) and (1.29) prevent the control designer from assigning the closed loop eigenvalues of the
averaged equation (1.24) to a desired region of the complex plane.

More specifically, considering the closed region D(a, w) of Figure 1.1, our purpose is to identify
the conditions under which we can find n real or complex numbers An,..., A,, occurring as pairs
of complex poles, such that they are the roots of the polynomial (1.27) which satisfy (1.28) and
(1.29). When this is possible, we say that (real or complex) pole assignment in the region D(a, W)
using closed loop vibrational control is possible. Note that if the closed loop poles are confined
to this region, then the system modes of (1.24), and hence the averaged modes of (1.23), will
have a time constant smaller than or equal to -1/la and decay exponentially at a rate greater
than or equal to -a/v'/2 -+w2 .

Since, closed loop vibrational control can only modify the coefficients a,0 , 2 < i < n, of (1.26),
we will assume throughout this section that n > 2. Lemmas A.1-A.5 are contained in Appendix
Al.

Theorem 1.4: Pole assignment in the region D(a, w) using closed loop vibrational control
is possible, only if

-al 0 n_ v. (1.30)
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Proof: If A1,... \A E D(a,w) are the roots of the polynomial (1.27). then

-a = A, (1.31)
s=l

and
Re(A,) _< a. (1.32)

Equation (1.30) is obtained by equating the real parts in (1.31) and using
(1.32). Q.E.D.

Theorem 1.5: Real pole assignment in the region D(a,w) is possible using closed loop
vibrational control feedback if and only if

-al 0 _< no, (1.33)
n-i~ 2

a20 <_ a 2 (1.34)

Proof. The necessity of (1.33) follows from Theorem 1.4. The necessity of (1.34) follows
from the fact that when A1,..., A,, are the roots of (1.27), the coefficients a, and a 2 are

n

a,- -= A (1.35)
i=1

a 2 = Z A, Aj. (1.36)

i>J

The maximum value that (1.36) can achieve subject to the constraint (1.35), (1.28) is given by
Lemma A.2 and is exactly the right hand side of (1.34). Therefore if (1.34) is violated, pole
assignment to the region D(o, ,) with real poles is not possible.

To prove ýhe sufficiency of (1.33), (1.34), assume they both hold. Choose

a l 
0l = ... =A = n-

It is immediately checked that these real numbers solve the problem of pole assignment to the
region D(o, w), which completes the proof. Q.E.D.

Theorem 1.5 gives a simple solution of the problem of pole assignment to the region D(a,w)
with real poles. When complex poles are allowed, results similar to Theorem 1.5 are obtained:

Theorem 1.6: Complex pole assignment in the region D(o-, w) is possible using closed
loop vibrational control feedback if and only if
(i) for n even

-aJo •_ no', (1.37)

and

a20 < aio ((n - 1)a2 +w2), (if Io"I>w) , (1.38)

or

- (w2 _a2) (n'- 2) (n+ ++ (2 ,2) (a°) (if H <w), (1.39)
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(ii) for n odd with one real pole placed at p < a

-alo •_ (n-1)a+p, (1.40)

and

a20 .5 p(ao+(p)a+2(-+P) 2 ((n - 2)a2 2) (if Ia > w) (1.41)

or

a 20 :5 -p(aio + p) + (w-2 _ a2) (n- ) (n--I + aao+)p

2 2 aP 2
+(W2 + a'2 ) 2u+ (if Io< <w) (1.42)

Proof: We first consider the case when n is even and let Ija > w. The necessity of (1.37)
follows from Theorem 1.4. The necessity of (1.38) follows from the fact that when A,,..., A,, are
the roots of (1.27), the coefficients a, and a 2 are

n
a1 = (1.43)

i--1

a 2 = ZA1 A. (1.44)

i>3

The maximum value that (1.44) can achieve subject to the constraint (1.43), (1.28) is given by
Lemma A.2 and is exactly the right hand side of (1.38).

To prove the sufficiency of (1.37), (1.38), assume they both hold. Choose

A; = -ýý- i~(1 = 1...,n
na(a (

It is immediately checked that these complex numbers solve the problem of pole assignment to
the region D(a,w), which completes the proof.

When n is even and Jal< w, the proof is similar and follows immediately from Theorem 1.4
and Lemma A.3.

The proof for the case when n is odd is completed by using Theorem 1.4, Lemma A.4 (if
Jal > w) and Lemma A.5 (if Jal < w). Q.E.D.

Remark 1.1: If a2 -w2 = 0, then conditions (1.38), (1.39) and (1.41), (1.42) in Theorem
2.6 are identical. Note also that the expressions in the right hand side of (1.39) and (1.42)
have larger values than the corresponding expressions in the right hand side of (1.38) and (1.41)
respectively. Consequently, it is easier to satisfy the condition for assigning complex poles into
the region D(a, w) such that ,2 -_w2 < 0 with closed loop vibrational control.

Remark 1.2: Some observations concerning the region D(a,w) are in order. Let A =
-Cw,, +- jwd be a complex pole, where C is the damping ratio, 0 < C < 1,w, = JAI is the
natural (undamped) frequency, and wd = w,,/'' is the damped natural frequency. Then if
A E D(a,w), it follows that C > -al/v/2 -+w2 and -Cw,, < a. To analyze the pole placement
capabilities of the closed loop vibrational control, we note that in practice, design specifications
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Figure 1.2: Inverted pendulum mounted on a platform

are often given in terms of _,.,, and -Cw,, < a. Such specifications will be satisfied by
D(o,, w) if a < a and -W/-2 + >2 _ mm, or equivalently

a < a, (1.45)
W < -a _ 1 (1.46)

Hence, different values of a and w, subject to the constraints in Theorem 1.6, can be chosen to
enforce different bounds on the damping ratio, natural frequency and damped natural frequency
of the averaged closed loop system.

5.1.5 AN ILLUSTRATIVE EXAMPLE

Below we present an example inspired by a helicopter with HHC. The system is shown in
Figure 1.2. Here, an inverted pendulum is mounted on a platform, and the goal is to maintain
the platform altitude at the desired level, z = 0, and the pendulum at the upright position, 0 = 0,
using a single force actuator, F, located on the platform. The two goals are clearly conflicting
in the sense mentioned in Section 5.1.1. Specifically, if we use the actuator to maintain the
platform at z = 0, the pendulum will topple down; if we use the actuator to force the platform
to move with an acceleration lesser than -g, the pendulum will stay in the upright position but
the platform will not be at z = 0. Therefore, closed loop vibrational control is the method of
choice.

The Lagrange equations for the system at hand are:

(Mi + m 2 )., - m 21sin0 - m 2 1
2 cosO + (Mi + m 2 )g = F - , (1.47)

m212j - m2 /(, + g)sin0 = -ri, (1.48)
where ml, z and C denote the mass, altitude and damping coefficient of the platform, m 2,0, 1,
and q represent the mass, angle, length and damping coefficient of the pendulum. Following the
ideology of closed loop vibrational control, we choose F with frequency-separated components:

F = (m+ M2)- kz + -f1 (1.49)
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Here the first term compensates in an open loop fashion for the system's weight, the second term
is the low frequency feedback to maintain z = 0, and the third term is the high frequency control
to maintain 0 = 0.

To reduce (1.47), (1.48) to the form (1.1), we linearize all the nonlinearities in (1.47) and
(1.48) retaining, however, the interaction term iB in (1.48). Assuming that f1 (t/c) = sin(t/c),
solving (1.47) as t --+ oc and substituting the resulting periodic function in (1.48), we obtain a
system of the form (1.1) with

X A 0 J!, B C O 1 0 f si

and
U= K (1.50)

where

K = [l(M 0 J (.

and 0 is the phase shift introduced by the system (1.47) with input f1 (t/E). Since Tr A < 0 and
(A, B) is controllable, according to Theorem 1.1, there exists an co such that for all 0 < f _< o,
the system (1.50) is stabilizabletby a state space feedback. Since, in addition, (C, A) is observable,
the system is stabilizable by output feedback as well (Theorem 1.2).

Further according to Theorem 1.5, real pole assignment in the region D(, ,w) is possible if
and only if

2m2> -r (1.52)
- 2M212

-..9 < 11 2

I - 4m2l24

The second condition is always met. Therefore, for real pole assignment, a has to be chosen
so that the condition (1.52) is satisfied.

According to Theorem 1.6, complex pole assignment into the region D(a, W) is possible if and
only if (1.52) is met and, in addition,

-_g< M1a(a+ W2
1 - 4mnl4 r2

is satisfied. Again, since the last condition is always satisfied, (1.52) is necessary and sufficient
for both real and complex pole assignment in D(a, w).

To design a specific controller for (1.47), (1.48), we average equation (1.50) to obtain

0a10,2 51r

212 (m1+M2) 2  M J
Then, if we choose the closed loop poles at

Al, = A2 = 12
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the resulting control gain K is given in (1.51) with

o= slmIr m ) +r + (1.33
S(1.53)

In general, if (1.52) is met, the gain K that assigns the closed loop poles at A1, and A2,, is
expressed by (1.51) with:

c = v'2l(ml + in 2 )- A 2 +. (1.54)

If we choose the observer gain L = [1I 121 to ensure that the observer poles are at

A,, = A2o = -yA1 , = 772r >0,

then

11 (77
M2 12

12 = (7+2)2172 g4m~l4  +7

In general, the observer gain L that assigns the observer poles at A1,, A2o is given by
11 = -A,. - A2 . -7

12 = AmoA2, -'l 2 +

Mrn2 2  1

To illustrate the behavior of the pendulum-platform system with closed loop vibrational
control, we carried out numerical simulations of equations (1.47), (1.48) with the following pa-
rameters : MI = 0.1 kg, m2 = 0.01 kg, g = 9.8 m/s 2, 1 = 1 m, 77 = 0.1, C = 0.6. The control
law has been chosen as in (1.49) with k = 5,a = 2 (see (1.54)) and e = 0.01. The results are
illustrated in Figures 1.3 and 1.4 for the initial conditions z = 0 m and 6 = 0.1 rad. In addition,
we introduced impulsive perturbations at the platform (at t 2.5 sec) and at the pendulum (at
t = 3.5 sec). As it follows from these graphs, the closed loop vibrational control indeed ensures,
on the average, simultaneous satisfaction of the two conflicting objectives using a single actuator.
Note that the limit cycle in the dynamics of the platform is due to the fact that the controller
(1.51), derived for the linear system (1.1), (1.50), is, in fact, applied to the original nonlinear
system (1.47), (1.48). This is why closed loop vibrational control may lead to the satisfaction of
the two conflicting goals not pointwise in time but only on the average.
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Figure 1.3: Platform Response with Closed Loop Vibrational Control
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Figure 1.4: Pendulum Response with Closed Loop Vibrational Control
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5.2 PART 2. STABILITY ROBUSTNESS IN CLOSED LOOP VIBRATIONAL

CONTROL

5.2.1 INTRODUCTION

Consider the system

SA x + B uf ) . (2.1)

f(t) = f(t+T), T#O,

T f(t)dt =0,

where x E Rn, u E IR, and c is a small positive parameter, 0 < c « 1.
A control theory for system (2.1), referred to as closed loop vibrational control, has been

developed in Part 1 of this report. In particular, the following has been proved :
Theorem 2.1: There exists K and co > 0 such that for all 0 < ( < co system (2.1) is

stabilizable by a state space feedback

K 1
u = -X = -I[k k,n- 1 ... k2 kj]x (2.2)

f f

if and only if (A, B) is stabilizable and the sum of all the controllable eigenvalues of A is negative.

This section is devoted to the property of stability robustness in closed loop vibrational control.
Both synthesis and analysis problems are addressed. In the synthesis problem, it is assumed that
(2.1) is the nominal plant, whereas the true plant is defined by

i = (A+AA)x+Buf(!) , (2.3)

where AA is the perturbation matrix. Assuming that the characteristic polynomial of (2.3)
belongs to a polytope, Section 5.2.2 below gives a condition which guarantees the existence of
a controller (2.2) such that the closed loop system (2.3), (2.2) is asymptotically stable for all
members of the polytope. In the analysis problem, Section 5.2.3 gives a bound in the spectral
radius of AA so that for all AA's that meet this bound, a controller (2.2), which stabilizes the
nominal plant (2.1), also stabilizes the perturbed system (2.3). In Section 5.2.4, we present a case
where closed loop vibrational control modifies the structure of the perturbation matrix AA and,
therefore, may lead to robustness properties stronger than those of conventional (time-invariant)
control. In Section 5.2.5, we will consider the robustness of closed loop vibrational control in the
presence of high frequency unmodeled dynamics.

5.2.2 SYNTHESIS

Assume that A and B in (2.1) are in the controllable canonical form

0 1 0 02

A= 0 0 ... 1 B=

-ano -a(,n-1)o .. .alo1
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where aj0 are the coefficients of the characteristic polynomial of the nominal system (2.1). Assume
that the perturbation matrix AA affects the last row of the system matrix A. and that the
characteristic polynomial of the perturbed system (2.3) belongs to the class P defined as follows:

P (=p(s) aEjPj(S):ao ,j-1,...,m;E a- =1
j=--1 j=1

Here

p,(S) = s + a',S"-1 + ... + a),j= 1,...,m ,(2.4)

are the vertex polynomials and ai,,i = 1,...,n denote the ith coefficient of the Jth vertex
polynomial.

Theorem 2.2: There exists K and fo such that for all 0 < e < co, any perturbed system
(2.3) with open loop characteristic polynomial in P can be stabilized by a single controller (2.2)
if and only if all coefficients ai,j = 1,... , m, defined in (2.4), are positive.

The proof of Theorem 2.2, is based on the following lemmas:
Lemma 2.1: [61] Consider a polynomial

p(S) = s + ,n-I +... + on, ,(2.5)

where n > 3, ip > 0,i = 1,... ,n. Let 6 be the positive real solution of the equation 6(6+ 1)2 = 1.
Then polynomial (2.5) is Hurwitz if the coefficients hik satisfy the condition

l=t-10+2 < 1,...,n - 2 . (2.6)
0101+1 -

Inequality (2.6) will henceforth be referred to as the Lipatov's conditon [61].
Lemma 2.2: Consider the following four polynomials:

Pkl(s) = s++ ' n- + Y+S- + s-3 + YS'-4 + ... (2.7)
Pk2(S) = Sn + sn-1 + Y sn-2 + Y3+ "-3 + -4+s"-4 +

pk3(S) = Sn +-Yjs- 1 +-t,+sn-2 +-tSn-3 +,Zn- 4 +...

pk4(S) = Sn + -_YSn-"2 s + -f"s-n 3 +-+ 74- 4 +...

where n > 3, 7 - , 1 < i < n and -IT > 0. Let coefficients T, 1 < i < n be defined as

T, (k) k- 4, 4 - , if iis odd, (2.8)

k- 4 - , if i is even,.

where k > 0. Then there exists a k* such that for all 0 < k < k', the coefficient T2 is positive
and the polynomials

pk, I+(s) = sn + (-I+ + -"(k))s"- + (y + U--(k))s'- 2 + ( 3y + "(k))s- 3 +... (2.9)

pk12(S) = S'+ + + + (k))Sn- 1 + (Y-f + W(k))Sn-2 + (f+ + 3(k))s"-3 +...
pk 3(S) = s,+ + + Ui(k))s-' + (-+ + W2(k))s'- 2 + (+ + "i(k))s- 3 +...

Pkd,4(S) = ?+(7+ + T(k))s"- + (-t + 7(k))s"- +(7; + (k))s"- +...

are Hurwitz.
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Proof: Let - denotes the ith coefficient, 1 < i < n, of the jth polynomial. I <j < 4, in
(2.7). First, we show that there exists k* such that for all 0 < k < k-, polynomials (2.9) satisfy
Lipatov's condition, i.e.

max (-, + - +2 +--((k)) k 6 < (2.10)

'1'51<n-'2<' (<' + + a--+, (k))

where 6' is defined in Lemma 3.1. Then, the statement of this lemma follows directly from
Lemma 3.1. To show that Lipatov's condition holds, consider

f =(k) max + 7:T(kD(-i+ 2 +aj-2 (k)) 1 << n -2. (2.11)'_<j:_4 (-ý + Tj(k)) (-?+I + T-+-•(k))

It is easy to see that the function f1 (k) is monotonically increasing with respect to k. Indeed,
define W0(k) = 0 and -1o = -+ = 1. Let c+ (k) = 1+ + U(k), c- (k) = 7 + T(k), and Atc.
c+ (k) - c- (k) =-y+ - - for 0 < q < n. Then

I- 1(k)c+2 ( k)__fj (k) = + +'(kc 1( 1 < I < n - 2 ,(2.12)

cji(k)cI, (k) +
cT(k)c•4(k) Ac +_----(,

= ..(k) 1+ ( + 1\-kc c1(k) C 12k

where

(k= k , if2<I <n-2. (2.14)

We will show that each of the three factors in the right hand side of (2.13) is a non-decreasing
function of k. Indeed, cý = 1,c- = -yi > 0, and since c,(k) = 7, + i(k) for 2 < i < n, we
observe from (2.8) that the exponent of k in c-(k) is negative or zero. Also Ac. > 0 for 0 < q < n
and from (2.14), 0(kj) < O(k 2 ) for 0 < k1 < k2 . Thus, f1 (k) is a continuous and monotonically
increasing function of k. Also, as it follows from (2.13), f(O) = 0, and limrk_oo f1 (k) = oo.
Therefore, by the intermediate value theorem, there exists kT* such that

f 1(kfl) = 6, 1 < I < n - 2. (2.15)

Let k* = mint kt*. Since f1(k) is monotonically increasing with k, it follows that f1(k*) <
fi(kT), 1 < I < n - 2. Therefore,

max fi(k) = max (- + U-j_-j(k))(-?1+2 + U--2(k)) < max f1(k*) • 6"I ',, (-?, +Ut(k))(l + 3-1+(k)) I

is satisfied for all 0 < k < k°. Finally, to ensure that 2 > 0, i.e.

k'--n > 0, (2.16)

choose k in (2.8) as follows:
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(i) if •< 0,1let 0 < k< k'
(ii) if -y >0 , let 0 < k < min[(t)---, k] . Q.E.D.

Proof: (of Theorem 2.2) Consider the closed loop system (2.3), (2.2) :

± = (A+AA+BA A f( )). (2.17)

In the fast time r = t/c, the closed loop system (2.17) is

dx- = (((A + AA) + BKf(r))x . (2.18)

Let O(r) be a fundamental matrix for BKfJ(r). Reducing (2.18) into the standard form [21] and
then applying the averaging principle, we have the following averaged system

x= 4-(!(A+ A)(! T, (2.19)

where the bar denotes time averaging operation. According to Theorem 2 of [171, there exists
co such that for all 0 < c < co, system (2.17) is asymptotically stable if the averaged system
(2.19) is also asymptotically stable. Moreover, it was shown in [52] that the averaged closed loop
system (2.19) has the following characteristic polynomial:

PCI(s) = s' + (a, + "-))s"-' + (a 2 + 2 +... + (a, + "-) , (2.20)

where

a- = k2ks-? , i = 1,...,n , (2.21)
ki = 0,

I.t

0(t) = J0 f(r) dr,

and the coefficients ai are the coefficients of the characteristic polynomial of the perturbed system
(2".'he necessity part is obvious: Since the a, coefficient in (2.20) cannot be adjusted, it is
necessary that aj > 0,j = 1,... , m for (2.20) to be Hurwitz.

Sufficiency is based on Kharitonov's theorem [58] and Lemma 3.2. For 0 < n < 2, it is easy
to construct W, 1 _ i < n to stabilize (2.20). Hence, we will consider the case when n > 3.
Let -i- = minja•, 7+ = maxi a4, where a; denotes the ith coefficient, 1 < i < n, of the jth
vertex polynomial 1 < j < m. We first construct four interval polynomials which contain the
polynomial (2.20):

Pkd S) = " n-1 + 4Sn-2 + .- 3 +c-,n4 +

pdJ2(S) = s" +cI' 1 + qs- 2 +4s"-3 + 4+sn- +...

Pk,13(S) = n- + CSn--1 + C4!Sn2 + 4S-n3 + C4 S + ...
pd4(S) = •n + C+ "n-1 + -n-2 + ;Sn-3 + C4+Sn-4

(2.22)

where

c7 + i < n (2.23)•,+= t + U;
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Next, we need to determine U in (2.23) satisfying a- = 0. > 0 so that the four interval
polynomials (2.22) are Hurwitz. It follows from Kharitonov's theorem that if the polynomials
(2.22) are Hurwitz, then (2.20) is also Hurwitz. Choose _,, I < i < n as defined in (2.S).
then from Lemma 3.2, there exists a k such that for all 0 < k < k", polynomials (2.22) are
Hurwitz. The corresponding stabilizing state feedback gain K can be computed from (2.21).
As it follows [17], for each Hurwitz averaged closed loop polynomial pci(s) in (2.20) there exists
cp > 0 such that for all 0 < _< f, the corresponding closed loop system of (2.3), (2.2) is also
asymptotically stable. In [17), a lower bound of cp was derived. This bound for c, is a continuous
function of the coefficients of the open loop characteristic polynomial p(s). Since the set of open
loop characteristic polynomial p(s) E P is closed and bounded, it follows from the property of
continous functions that a uniform lower bound of fp exists. The proof is completed by setting
co = minp fp. Q.E.D.

Remark 2.1 : The condition that the coefficient a, > O,j = 1,... , m, in Theorem 2.2 is
equivalent to the requirement that the trace of the perturbed matrix A + AA be negative.

Remark 2.2 : Theorem 2.2 is an extension of the result obtained in [62] for interval poly-
nomials. The assumption that P is polytopic is weaker than Kharitonov's interval polynomial
assumption because it allows for linearly dependent coefficient perturbations.

Example 2.1 : Consider a 6th order system (2.3) with open loop characteristic polynomial
p(s) E P where P is a polytope of polynomials (convex hull) with the following four vertex
polynomials

pi(s) = s6 + 0.5s5 - 0.6s 4 + 1.5s3 + 2.5s2 +3.4s-3 ,
p2 (S) = S6 +0.7s5 - S4 +2S3 +2s 2 +4s - 1
p3 (s) = 6+S5+S4 +S +3s 2 +3s+1,

P4(S) = S6 + 0.6s5 + 0.2s4 + 1.13+2.9s2 +3.8s+22

This uncertain open loop system is unstable since the vertex polynomials pi(s) and p2(s) are
obviously unstable. With vibrational state feedback control (2.2), the characteristic polynomial
(2.20) of the resulting averaged closed loop system is bounded by the interval polynomials (2.22).
Next, we construct a-i, I < i < 6, as defined in (2.8) and determine k > 0 so that the interval
polynomials (2.22) are Hurwitz. Following (2.12), we define the function f,(k) as:

ft(k)= ci_7(k)c 1+2(L) 1 < 1 < 4C7 (k) c- I(k)

and hence

f,(k ) - k3 "5  ( + ^1 T ,

f 2 (k) = k ( + -) (1 +

f3 (k) = k (1 + Ac2 k5) + Ac-k

f 4 (k) = k (±1 + ) + Ac 6k4

where Ac, = c- c, max al- min 4, Consequently, with -j =minj a= 0.5, 6 = 0.4656,
we compute kT, 1 < 1 < 4, such that

fl(k*) = (k•') 3 ,5 (l + 2(kl*)'' 5 ) = *', (2.24)
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f 2(k;) = k;(1 + 1)(1 + (k; = ', (2.25)

f 3(k;) = k;(1 + 2(k;)5 )(1 + 2k) =6 , (2.26)

f 4(k:) = k:(1 + 2(k;)'"s)(1 + 5(k;) 4) = 6• (2.27)

Solving (2.24)-(2.27), we obtain k = 0.6536, k; = 0.2327, k- = 0.2925, k: = 0.3232. Thus k =

mint kT* = k2 = 0.2327. Since mini a2 < 0, for 0 < k < 0.2327, the interval polynomials (2.22)
and consequently, the characteristic polynomial (2.20) will be stabilized. Arbitrarily choose
k = 0.23, then U2 = 1554.7,T = 3.5, T4 = 3237.6, Ts- = -0.8, and T = 360.3. With f(r) = sin r,
the corresponding feedback gains in (2.2) was k, = 0, k2 = 55.8, k3 = 0.1255, k4 = 116.1,k 5 =

-0.0287, and k6 = 12.9. The stability of the characteristic polynomial (2.20) of the averaged
closed loop system with the feedback K, can be verified by performing eigenvalue tests on
appropriate Hurwitz matrices corresponding to each of the vertices of the polytope of polynomials
P (63]. From Theorem 2 of [17], the asymptotic stability of the averaged closed loop system will
ensure the asymptotic stability of the original system (2.3).

5.2.3 ANALYSIS

Consider system (2.3) with feedback (2.2):

i = (A+ A±BK f ()) (2.28)

Assume that K and c are chosen according to Theorem 2.1 so that (2.28) is asymptotically
stable when AA = 0. Under this condition, we obtain the following results:

Theorem 2.3: There exists fo such that for all 0 < c < fo, the system (2.28) is aymptot-
ically stable if

O'mox 'I- (- iA5 (D • Ai(Q) (2.29)
( If ) () Ar ,.(P)I

where P is the unique positive definite solution of the Lyapunov equation

PA+ AP+2Q = 0, (2.30)

Q is some positive definite matrix and

A t -1(A)O(A (2.31)

Proof: From (2.19), the averaged closed loop system's equation of (2.28) is:

X 4b1 .1(A +AA)$()

=(A + A-A) 7, (2.32)

where

= 5-= (- ) AAS A)

and the bar denotes time averaging operation.
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Note that (2.32) is obtained by the linearity of the averaging operation. From [67]. we know
that the averaged linear time-invariant system (2.32) is stable if

amar(AA) < A""',(Q) (2.33)
Amaz(P) *

where P is the unique matrix that satisfies the Lyapunov equation (2.30). Q is any positive
definite matrix and o...(M) represents the largest singular value of l.

Hence, for each AA satisfying (2.29), the averaged system (2.32) is asymptotically stable,
and there exists fAA such that for all 0 < f < f&AA, system (2.28) is also asymptotically stable.
In [171, it was shown that CAA is a continuous function of the elements of the matrix AA. Since
the set of AA satisfying (2.29) is closed and bounded, it follows that there exists a uniform lower
bound for CA. The proof is completed by setting fo = min&A CAA. Q.E.D.

Note that the perturbation bounds given by (2.29) are indirectly imposed on ZAA through
the averaged perturbed matrix AA. Assume that A and B are in the controller canonical form,
then

AA = AA+ AA, (2.34)

where

0 ... 0 0

AA= 0 00 0 (2.35)

Sk, - Ainkn-i+- ... k2 , -0 J
and AAij denotes the (i,j)th element of the perturbation matrix AA.

Corollary 2.1: Assume that A and B are in controller canonical form. Then there exists
an f- such that for all 0 < e < c, the system (2.28) is stable if

Amn( Q) (.6
amax(AA) + am,,(AAI) < Amin,(P) (2.36)

Proof: The proof follows directly from Theorem 2.1, (2.34) and the fact that aO,,L(AA +
AA1 ) _ a,..m(AA) + a0 .(AA 1 ). Q.E.D.

Example 2.2 : Consider the system (2.28) with

A = [ -3 ,B 1 , Bf (r) =sin(r),

and K = [2 0]. Applying the averaging principle, we obtain the averaged system (2.32) with

1 -2 -3

Choose Q = I. From (2.36), the allowable range of the perturbation matrix which ensures the
asymptotic stability of the original system (2.28) is given by

Umaz(AA) + 21AA1 21 5 0.382

28



5.2.4 A SPECIAL CASE

In a special case, it is possible to show that the structure of _A may be different from that
of AA. This difference can be exploited in order to derive stronger robustness results for closed
loop vibrational control than linear time-invariant control. Below we give a necessary condition
that describes this situation.

Theorem 2.4: Assume that A and B in (2.1) are in controller canonical form. Then
vibrational feedback (2.2) modifies the structure of the perturbation matrix AA affecting the
averaged system (2.32) only if the first n - 1 elements in the last column of AA are not all zero.

Proof: From equation (2.35), we see that the first n - 1 elements in the last row of the
averaged perturbation matrix AA can be modified by the feedback gains ki, i = 2. ... , n, only
when AA # 0,j = 1,...,n - 1. Q.E.D.

The above result shows that vibrational control is capable of changing some of the elements
of the perturbation matrix AA which affects the averaged system. Since the asymptotic stability
of the averaged system (2.32) ensures the asymptotic stability of the original system (2.28), the
modification in the perturbation matrix affecting the averaged system may change the stability
robustness of the original system.

Indeed, given a Hurwitz matrix Ao and a matrix perturbation direction A,, it is shown in
[69] that the largest interval (rmm, rmaz) such that

Ar = Ao + rA 1

is strictly stable for all r E (rmin, rnmt,) is given by

1 1

= A~i,(-T(Ao)- 1 T(Aj)) , = A+.(-T(Ao)- 1 T(Ai)) , (2.37)

where T(.) is any linear mapping which transforms the stability problem into a nonsingularity
problem, A)+..,(M) denotes the maximum positive (real) eigenvalue of a square matrix M, and
A i-(M) denotes the minimum negative (real) eigenvalue of M.

"'ince the perturbation bounds in (2.37) depend on the perturbation direction A,, the mod-
ification of AA into TAi in the averaged system by closed loop vibrational control may lead to
improved stability robustness. This is illustrated in the following example :

Example 2.3 : Consider the system (2.3) with linear time-invariant state feedback

Ao = A+BK (2.38)

0 [ [ 2  -1 0
S0 0 1 0 J- 01 1

-6 -11 _6 1

0 1 0
[0 0 1

-8 -12 -6

where Ao represents the closed loop system matrix. Assume a unidirectional perturbation matrix
AA of the form

0 1 0

AA = rA 1 =r 0 0 1
9• 1 0

then the maximal perturbation bounds (2.37) under which stability is preserved is given by
r E (-1,4).
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Next, we consider the same open loop system (2.3) with f(r) = sin r and introduce closed
loop vibrational feedback of the form (2.2). Choose K = [2v.2 v'2 0] so that the averaged
closed loop matrix A in (2.32) is identical to A0 . This ensures that the dynamics of the system
(2.3) with closed loop vibrational control is similar to the linear time-invariant state feedback
(2.38). Then AA in (2.32) will have the form

0 1 0
A-A = r 0 0 1

0 0 1

From (2.37), we determine system (2.32) is stable if and only if r E (-1, 8), which compares fa-
vorably with the interval (-1,4) obtained for linear time-invariant state feedback. Unfortunately,
this situation does not always take place:

Example 2.4 : Consider the same nominal closed loop system as in Example 2.3. However,
assume that AA now has the form:

0 1 0

AA= r 0 0 1

Then with linear time-invariant state feedback (2.38), the maximal range which ensures the
stability of the closed loop system is r E (-1,4).

With closed loop vibrational feedback (2.2), the averaged perturbation matrix 'A becomes
S0 1 01

AA = r 0 0 1
0 - 1 1

and closed loop stability of the averaged system is ensured if r E (-1, 3.6298).

5.2.5 UNMODELED DYNAMICS

Generally, a model of the system to be controlled may become less accurate at high frequencies
because of unknown or unmodeled parasitic dynamics. Moreover, these parasitic dynamics may
change with time or other physical parameters, and so cannot be confidently modeled.

In state space plant descriptions, the addition of high frequency parasitic dynamics is called
a singular perturbation, because the perturbed plant has more states than the plant. Consider
the following singularly perturbed form of (2.1)

= Ali + A12 z + Bluf(!) , (2.39)

= A 2 1X + A 2 2 Z + B 2 Uf

where x E VR' is the modeled state, z E R1 is the unmodeled high frequency state, u E lR is
the control, f(t) is a periodic, average zero scalar function, p is a small positive constant and
0< f <1.

Following (2.2), we synthesize a state feedback of the form

U = K , (2.40)
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where only the modeled state x is available for feedback.
The resulting closed loop system (2.39), (2.40) is given by

i = Ai(t)z + A12(t)z , (2.41)

W, = Ai2 (t)x + A22(t):

where

An(t)= A11±Bl-f , (2.42)

A12(t) = A12 ,

A21(t) = 21+ B2K f (D

A22(t) = A22

In this section, we determine conditions on All, A12, A2 1, A22, K, and y which ensure the stability
of the system (2.41). To answer this question, we depend strongly on the following result:

Theorem 2.5: [70] Consider the linear time-varying system

i = A 11(t)X + A12(t)z , (2.43)

S= A2 1 (t)X + A22(t)z

Suppose A (t) are continuously differentiable, Aj(t) are bounded, for i,j = 1,2, Re A(A 22(t)) < 0

and the reduced system
S= [A 11(t) - A, 2(t)Ad(t)A2 I(t)] , (2.44)

is uniformly asymptotically stable. Then there exists a positive number po such that whenever
p belongs to (0, Mo), the system (2.43) is uniformly asymptotically stable.

Inspecting (2.41), it is clear that Aij(t) are continuously differentiable, Aj(t) are bounded
for i,j = 1,2. Furthermore, the reduced system of (2.41) corresponding to the form of equation
(2.44) is

i= Al- A12A-A 21 + (B 1 - A 12A-B 2 )ff (.)] , (2.45)

Hence the stability of the singularly perturbed system with closed loop vibrational control is
answered by the following theorem :

Theorem 2.6: Consider the system (2.39). Suppose that
(All - A12A1A21,,Bi - A12A-B 2) is stabilizable and the sum of all the controllable eigen-
values of A11 - A12A-A 21 is negative. Then there exists a K, and an Fo > 0 such that for all
0 < c < co, system (2.45) is uniformly asymptotically stable. In addition, if A22 is Hurwitz,
there exists a positive number Mo such that whenever p belongs to (0, Mo), the closed loop system
(2.39), (2.40) is uniformly asymptotically stable.

Proof: The stabilizability condition for (2.45) follows directly from the results of Theorem
2.1. From Theorem 2.5, the uniform stability of (2.45) and the asymptotic stability of A22 will in
turn ensure the existence of a Mo > 0 such that the closed loop system (2.39), (2.40) is uniformly
asymptotically stable for all 0 < p < Mo. Q.E.D.

A conservative estimate of the value #o can be computed as in [71] or [72]. In particular, the
estimate obtained by Kokotovic, Khalil and O'Reilly [72], based on the solutions of two Lyapunov
equations, is shown in most cases to be less conservative than that obtained by Javid [71].
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5.3 PART 3. DESIGN OF VIBRATIONAL CONTROLLER FOR PERFORMANCE
AND DISTURBANCE REJECTION

5.3.1 INTRODUCTION
Consider the class of dynamical systems described by the following equations:

i(t) = Ax(t) + Bu(t)f(A) + B&w(t) , (3.1)

z(t) = Cx(t) + D2Zu(t) + Dvw(t)
y(t) = Cx(t) + D,,w(t)
f(t) = f(t+T),T#O,

lIT
f(t)dt =0,

where X E /R' is the state, y E JR is the measured output, z E IR is the regulated output,
u E JR is the control input, w E /R is the exogenous input, f(t) is a known periodic, average
zero scalar function, and f is a small positive constant. A characteristic feature of this system
is that the control enters the open loop system dynamics as an amplitude of a periodic, zero
average function, and this amplitude can be chosen to depend on the system's states or, more
generally, output. An example of such a system is the helicopter with Higher Harmonic Control
(HHC), where periodic feathering of rotor blades around a fixed pitch angle is introduced in
order to suppress the fuselage vibrations (3]-[5]. Another example is the periodic operation of
chemical reactors [19] where the input flow vibrations are introduced so that the closed loop
system behaves as desired.

The theory for the control of system (3.1), referred to as closed loop vibrational control, has
been developed in Section 5.1 of this report. In particular, necessary and sufficient conditions for
the output feedback stabilizability of the system (3.1) with the observer-based output controller,
K,,,, defined by

X= Ai + Buf + L(y-), (3.2)

K.
U --

Ci,

have been established. However, the class of all stabilizing output feedback controllers has not
been characterized, although such a characterization could be quite useful, e.g. to satisfy desired
performance specification 61.

The purpose of this section is to present such a characterization using the
parametrization approach. The results obtained are quite similar to the Youla
parametrization [731. Specifically, we show that the averaged closed loop transfer function re-
suiting from a stabilizing output feedback controller is an affine function of an arbitrary stable
transfer function.

This section is organized as follows : Section 5.3.2 determines the set of all stabilizing con-
trollers for system (3.1). The parametrization of the corresponding averaged closed loop transfer
function is described in Section 5.3.3. To illustrate the results, Section 5.3.4 presents an example
where the parametrization of the averaged closed loop transfer function is used to design a con-
troller that achieves certain step response specifications for the original, non-averaged system.
The disturbance decoupling capability of closed loop vibrational control is discussed in Section
5.3.5.
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5.3.2 PARAMETRIZATION OF STABILIZING OUTPUT CONTROLLERS

The following result for stabilization of the system (3.1) with output feedback (3.2) has been
derived in Section 5.1:

Theorem 3.1: There exists K. L and an 0 < co << 1 such that for all 0 < c K< o system
(3.1) is stabilizable by the output feedback (3.2) if and only if (A,BC) is stabilizable and
detectable and the sum of the controllable eigenvalues of A is negative. Moreover, the separation
principle holds, i.e. the choice of K and L can be carried out independently.

Although (3.2) contains a time varying function, f(t/h), it nevertheless can be viewed as a
time invariant controller since, firstly, f(t/,E) is a part of the control signal and, secondly, K and
L are constant gains. Therefore, it is natural to parametrize all stabilizing controllers for (3.1)
in the class of rational transfer functions.

To accomplish this, augment the closed loop system (3.1), (3.2) by an auxilliary controller
KQ as shown in Figure 3.1, where KQ is defined by:

xQ = AQxQ + BQe , (3.3)
V = ýý_ Q q+ Q e

f =
e = y-C,

and y and i are defined in (3.1) and (3.2) respectively. Note that KQ is a compensator charac-
terized by the high gain 1I

Q(S) [CQ(sI - AQ)- BQ + DQ]

The state space realization of the augmented controller (K,,m,,, KQ) is

ie = Aexe + Buf (!)+ Le(y - Cxe), (3.4)

Ko • ~ x,),(3.5)U = :L-Xe+ Q(y - !.

where A 0] B,
Xe = [ ],Ae A A] B,=~

C" = C o , A K CQ] L 0 '[L

Theorem 3.2: Assume (3.1) is internally stabilized by the nominal controller (3.2). Then
it is also internally stabilized by the augmented controller (3.4), (3.5) if and only if AQ is stable.

Proof: The necessity is proved by the following consideration. The internal dynamical
equations for the closed loop system with the augmented controller (3.2), (3.3) are

A+ Ba&CJ (B& - Ba~ B~gf ''iS= (L + BP7f(1))C A -LC +(BK - B2C)f (1) BCgf 1 -

I. BQC - BQC AQ xQ

33



S= Ar + Bur (1) + B,,w
w

Z= C~z. + Dz,,u + Dzww

U y = Cx + Dyw w

S Q --AQXQ+J"B~e

L. 4

Figure 3.1: Plant (4.1) with the augmented controller (K----, KQ).

Defining the observation error e1 = z - •,we obtain the following equivalent dynr.nical
equations :

A B-• (A) -Buf (1) + B-Cf(') Bc-Qf [z]

[l =0 A -LC 0AQ]
X'Q A-Q0 BQC [XQJ

Thus the stability of the closed loop system depends on the stability of A + BK/Ef(t/e), AQ and

A -LC.Sufficiency is proved as follows : Since the stability of the closed loop system does not depend
on DQ, we let DQ s 0. The equations for the controller (3.4), (3.5) can be rewritten as

Be = (Ae + BeKef (!) - LeCc)XC + Ley, (36

U K e. (3.7)

In fast time t -- t/y , the resulting closed loop equations with the controller (3.4), (3.5) are

AL~ -(A LC.C) eefT

- U = KEA BKji) J (3.8)

" •L. C f (A,- L, C.) + BK, f(r) X,3
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Let 01(r) be a fundamental matrix for BeKef(r). Define

0= 1 '(7)AeOi(T),

and

x(r) 1 [1 (4i1(7) - I)] r () 1(.9)

Using the transformation (3.9), we reduce (3.8) into the standard form [21], apply the aver-
aging principle and obtain the following averaged equations:

r~]=A+I[I 0](4b-1LXC - LC) [I 0](T - A. -_4-'LeCe + Le.Ce)1[1
14JL 'LeC T- (Dj1 LC, i

(3.10)

where the bar denotes time averaging operation. To simplify (3.10), introduce the following
substitution

717 0

which yields

1A'02 [IC,-L.,
=A-LC 0 (3.11)Z20 T2~~Q"•2 0 ~- BQC AQ"2 '

where 0 2(r) is a fundamental matrix for BKf(r). Hence, if AQ is stable, the stability of the
original closed loop system is ensured since K and L are chosen to stabilize $t'AOD2 and A - LC
for all 0 < e :5o f17J. Q.E.D.

Remark 3.1 : Note that the augmented controller equations (3.4), (3.5) are actually the
equations of an observer-based controller for the system (3.1), with its dynamics augmented in
such a way that the the signal e is uncontrollable from v. This structure is the same as the state
space version of the Youla parametrization of all stabilizing controllers for linear time-invariant
systems [74].

5.3.3 PARAMETRIZATION OF THE AVERAGED CLOSED LOOP TRANSFER
FUNCTIONS

As it has been shown in the proof of Theorem 3.2, the dynamics of (3.1) with the augmented
controller (3.2), (3.3), and DQ = 0 are characterized in the average by the equation (3.10). In
this section, we derive an explicit parametrization of the averaged closed loop transfer function
from input w to the averaged output, X, defined below. We also show that this averaged output
approximates asymptotically the actual non-averaged output z as f approaches zero.

Assume that A and B in (3.1) are in the controller canonical form, (if (A, B) is only stabi-
lizable, we assume that the controllable part of the Kalman decomposition is in the controller
form) and let

K = [k3... k2
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where ki -, 1,i = 1,... ,n. The averaged closed loop equations (3.10) with DQ 0. reduces to

=Aý + [- BT k2ý7BC~Q);,

LC + T-L k2 Q2BCQ]
BQC "-BQC AQ

where

7?' = k,ý k2k.I ... k2 0 (3.12)

0()= fo f'/()dT (3.13)

Define the averaged output T as follows

-5 = Cz- + Dz,,U + Dzw, (3.14)

where U = [-7'f k2-2CQ]'7. Hence, from (3.10) and (3.14), the averaged closed loop transfer
function from w to 7 resulting from the augmented controller (K,"o,, KQ) can be represented by

"2 = (TI, + T,,QT21)w , (3.15)

where

[TTII(s) T s0 2 = CT(sI - AT)-'BT + DT , (3.16)

AT = -- B-
ILC A-BK-LCJ'

BT = [Lu,, B]

CT = [°- D ]

DT = D ,w Dzu]

and 7 and L are the state feedback and observer gains of the nominal estimated-state feedback
controller, K--,, of the averaged closed loop system. The averaged closed loop transfer function
is depicted in Figure 3.2 where the system (3.1) and the nominal controller o are combined
into the block T.

The stable transfer function Q(s) has the following state space realization

-Q = AQY + BQ'9 , (3.17)

U= k 27CQy-.

Expression (3.15) shows that the averaged closed loop transfer function with DQ = 0 is affine
in Q(s), where Q(s) is any asymptotically stable strictly proper transfer function with the gain
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w

Q(s)

Figure 3.2: Parametrized form of averaged closed loop transfer function

of order 1 (compare with (3.3)). This flexibility in choosing Q(s) can be used to yield a closed
loop system which satisfies certain design criteria.

Remark 3.2 : For DQ 5 0, the algebra is considerably more involved, but a similar result
can be obtained which parametrizes the averaged transfer function in terms of an asymptotically
stable transfer function.

Next we establish the correspondence between the averaged output i and the actual non-
averaged output z.

Theorem 3.3: Assume that D,, = 0 and the transfer function corresponding to (A, B, Cz)
in (3.1) has relative degree greater than or equal to 2. Then, if the averaged system (3.10) is
asymptotically stable, for any 6 > 0 there exists co(6) such that for all 0 < c <_ co, system (3.1)
is also asymptotically stable and the following inequality

IIz(t)- z(t-) •_ , t E [0, 00), (3.18)

holds.
Proof: Let A and B be in the controller canonical form, (if (A, B) is only stabilizable, we

assume that the controllable part of the Kalman decomposition is in the controller form). From
(3.1) and (3.14),

IIz(t) - z(t)II = IIC¢x(t) + DZw(t) - C.- DZUw(t)lI

where • is the averaged steady state of system (3.10). Substituting relation (3.9) into the above
equation, we have

IIz(t) - Z- = IIC(ý - Z) + C[0 2  - k 1)BCQIII ' (3.19)

where

B= [ 00 0 1 C C. CI... C2 o0 01 2 () exp(BKO(t/E)).

Thus (3.19) simplifies to

IWO~t - ZM•11 =llC(ý - 0)11,
< max IcilllM - 01

O<i<n

Consequently, the result (3.18) follows directly from Theorem 1.3 of [75]. Q.E.D.
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5.3.4 DESIGN EXAMPLE
In this section, we will use the parametrization of the averaged closed loop transfer function

to design a controller of the form (3.4), (3.5) so that the original system meets certain step
response specifications.

Consider now an example of system (3.1) with

[01 0 1 [0110 i,B = 0B 1A = =

0 0 -10] L 0
C.- 10 -10],D,,ý 01,D.. [0,

C = [ -10 1 0 D, [ 1 ,f(t) = sin(-t)

where z represents the step response output of the system and y is the measured tracking error
to a step input.

With c = 0.002, a controller (3.2) that stabilizes (3.1) can be defined by

K =[3.7032 3.2404 0 ], L=[-12.5 -75 _5 0 ]T.

The corresponding transfer functions T11(s), T1 2(s), and T21(s) can be computed from (3.16) with

7T= [ 6 5.25 0 ], L = [ -12.5 -75 _5 0 iT.

Assume that the design specifications for the averaged closed loop system are defined in terms
of the overshoot, undershoot, and the rise time:

TT- = sup z(t) -1 •< 0.25, (3.20)
t>o

z," = sup-z(t) < 0.7, (3.21)
t>o

trie = inf {T Iz(t) >0.8fort>T} <1. (3.22)

The design specifications (3.20)-(3.22) are closed loop quasiconvex [76], since the set of closed
loop transfer functions satisying the design specificati -s is quasiconvex. Thus the controller
design problem can be solved via quasiconvex optimization. Following the approach of 176],
we use the Ritz approximation of the augmented controller KN(X) that consists of the nominal

controller K,,,,,, and a stable transfer function Q(s) defined as a linear combination of the fixed
transfer functions Q1(s),.. . ,QN(S) :

N

-Q =) aQ,(s) ,N = 5.
i=O

Vector a = [al ... aN] E MItN, has to be determined so that the the controller KN(x) ensures the
desired closed loop specification. With T = I in (3.22), the overshoot, undershoot, and the rise
time specifications are

5

Za, si(t) < 1.25 , 1.0 < t < 10.0 , (3.23)
1

5

Zaisi(t) > -0.7, 0 < t < 1.0, (3.24)
1

5

,risi(t) ? 0.8 , 1.0 < t < 10.0 , (3.25)
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where si is the step response of the averaged closed loop system with the controller K.,.(x) when
aj = 1 for i = 1,... , 5. As in [761, we finely discretize t in (3.23)-(3.25) to obtain a set of L linear
inequality constraints on a of the form:

ckja < hk, k L

where ck and hk are constants. The following solution

a = ( 495.9832 -197.1771 -400.5335 -317.782 -179.7225

was found by minimizing 11a112 subject to the constraints (3.23)-(3.25) with

Q= , ?_i= 1,...,5.

The corresponding stable transfer function Q(s) in (3.3) for the original non-averaged system
(3.1) was computed to be:

AQ .

-15 -105 -455 -1365 -3003 -5005 -6435 -6435 -5005 -3003 -1365 -455 -105 -15 -- 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Eq = 0i 0 o a o o o o 0 0 0 0 0 0 0 oT,

617121 [ 0.0050 0.0675 0.4217 1.6003 4.0998 7.4458 9.7688
Cq 9.2020 5.9643 2.2986 0.1462 -0.3797 -0.2225 -0.0572 -0.0060

D9 =0.

The resulting closed loop step response of the averaged system with the nominal controller
and the augmented controller KN(x) are shown in Figure 3.3.

The closed loop response of the original non-averaged system (3.1) with the nominal controller
K,... and the augmented controller (Ko,, Q) are shown in Figure 3.4. It can be seen that the
actual and averaged closed loop step responses are almost identical which is in agreement with
the result of Theorem 3.3. Also, both the actual and averaged closed loop step responses with
the respective augmented controllers satisfy the design criteria.

5.3.5 DISTURBANCE REJECTION

The question of when the disturbance w can be completely decoupled by feedback control
from the regulated output z in the system (3.1) led to the development of geometric control
theory. The so-called disturbance decoupling problems for linear time-invariant systems have
been investigated extensively in the last two decades. The problem is to find a compensator such
that the closed loop transfer function from disturbance w to desired output z is equal to zero.
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Using the concept of (A, B)-invariance, the disturbance decoupling problem with state feedback
(DPP) was solved in [77]. The problem of disturbance decoupling with state feedback and the
extra requirement of internal stability (DPPS) was solved in [781, [79]. A detailed reference for
the above mentioned problems can be found in [80].

In this section, we study the disturbance decoupling problem with closed loop vibrational
control. In particular, for the system (3.1) with Dz,, = 0, i.e.

i(t) = Ax(t) + Bu(t)f + Bw(t), (3.26)

z(t) = C"X(t),

we will establish conditions under which a state feedback of the form

u = K-x , (3.27)

can be found which decouples z from w. Similar to the approach in Section 5.3.3, we will first
derive the averaged equation for the closed loop system (3.26), (3.27). Let t(7) be a fundamental
matrix for BKf(r) and introduce the substitution

ý(r) = 0(040•)

Then the corresponding averaged equation of the closed loop system (3.26), (3.27) is

t= 4-1 At +,t-1 B( w, (3.28)

Assume that (A, B) in (3.26) is controllable, then without loss of generality, let (A, B) be in

the controller canonical form:

0 1 ... 0 r0o

A = 0 0 ... 1], B= 0
--an -- an-1 ... -a,

C,= Co c. c..

With state feedback

U= -x=- ikn ... k- ] k ,

the averaged closed loop system (3.28) reduces to

= (A- B7F) + B~w, (3.29)
- CZ

where 7? is defined in (3.12).
It follows from Theorem 3.3, that if the transfer function corresponding to

(A, B, C.) has relative degree > 2, the actual regulated output z will be arbitrarily close to
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-'. Hence, our goal is to determine T for the averaged linear time-invariant system (3.29) so that
T is decoupled from w. This will in turn ensures that for the original non-averaged system (3.26).
the regulated output z will also be decoupled from the disturbance w.

To solve the disturbance decoupling problem for the averaged system (3.29), we first introduce
the following definition :

Definition 3.1: A subspace V C X = 1R' is said to be (A, B)-invariant (or controlled-
invariant) if there exists K : X --, U such that (A - BK)V C V.

Theorem 3.4: [801 A subspace V C R' is controlled-invariant if and only if AV C
V + ImB.

Corollary 3.1: Consider the system (3.29) with C # 0. Then V C kerC does not contain
the vectore,,=[0 ... 0 1 iT.

Proof: We shall prove by contradiction. Let ej denotes the i - th standard basis vector.
Assume that en E V. From Theorem 3.4, for vi = e,,, there exists a wi E V and ui E U = R such
that

Ae,, = wi + Bui .

Hence wi = e,-i E V. Applying Theorem 3.3 again with vi = e,,- 1, we see that e,- 2 E V.
Repeating this procedure, we see that ei,e 2,. . .,ee, E V. Hence dim(V) = n and we obtain a
contradiction. Q.E.D.

Definition 3.2: The system (3.29) is said to be disturbance decoupled by closed loop vibra-
tional control if there exists Kf of the form (3.12) such that

<A-B'KIImB. > C kerC,

where

< AjImB >'_- ImB + AIm.B +... + A n-1ImB.

Theorem 3.5: Assume that the transfer function corresponding to (A, B, C,) in system
(3.29) has relative degree 2. Then the system (3.29) can be disturbance decoupled by closed
loop vibrational control if and only if there exists a controlled-invariant subspace V satisfying
ImB, C V C ker C.

Proof: The necessity is well known and established in [801. To prove sufficiency, we need
to show that there exists a K E "K(V) = {I : X -+ UI(A - B(-K)V C V and V C ker C}
satisfying (3.12). Let vj,... , v, be a basis for V. From Corollary 4.1, we know that e,, ý V. Now
en-1 V V since c,-. 2 # 0. Applying Theorem 3.4, for each vi,i = 1,...• , there exists a wi E V
and ui E U -R such that

Avi = wi + Bui ,

where B : U -- X. Let v,,+ 1,... , v,_ 2,e,,_ 1,e, be a set of vectors such that
vl,. .. ,V•,++ .... 1 2,Ve,2.-1 7 e,n is a basis for 1'n. Define 7K by the equation

F [vi ... V" Vu 1 . .]. Vn-2 cn- 1 e, = [u, ... Ul tp.1 ... tL- Un.1 Un] ,

where the scalars u•,+1,... ,u,,.- 2 are arbitrary and u.- 1 > 0 and u, = 0. Clearly, K satisfying
(3.12) exists and is computable since the matrix [vi ... v,,v,,+1 , v,...2e,_.e,] is non-singular.
Q.E.D.

It follows from Theorem 3.3, that if the averaged output i is decoupled from w, then the
effects of w will also be decoupled from the actual output z. The corresponding state feedback
gain K for the original non-averaged system (3.26) can be easily computed from (3.12).
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5.4 PART 4. VERY HIGH HARMONIC CONTROL IN HELICOPTERS

5.4.1 INTRODUCTION

Helicopter vibration is a long standing problem. From the earliest days of rotorcraft develop-
ment, oscillatory motions of the non-rotating portion of the airframe have been a matter of serious
concern. Vibration affects adversely pilot performance and passenger comfort and increases oper-
ation costs and maintenance requirements, limiting the use of helicopters in commercial aviation
and military operations.

Traditionally, rotor induced vibration reduction efforts have focused on altering blade and
fuselage dynamic characteristics or supplementing the rotorcraft with vibration isolators and
attenuators. These passive methods have met with limited success [3]. Considerable research
has been done on "active" techniques, which make direct use of vehicle control. One of the most
widely used method of active control is the Higher Harmonic Control (HHC). HHC involves
driving the blade pitch angle at the frequency N/rev (N is the number of blades) in order
to cancel the effect of vibratory airload transmitted to the fuselage. Recent experiments, [31-

o51, have shown that HHC may lead to an order of magnitude reduction in fuselage vibrations.
or this method to be effective, not only the amplitude but also the phase of the oscillations

introduced should be chosen appropriately, depending on the flight conditions. The purpose of
this research is to show that if the frequency of the oscillations introduced is much greater than
N/rev, the phase dependency disappears. To distinguish this approach from HHC, we call it
VHHC, the Very High Harmonic Control. This part of the report presents a simple model and a
hypothetical explanation of the efficacy of VHHC. The development presented here is based on
the ideas of vibrational control. Vibrational control is a method for changing dynamic properties
of systems by introducing a control which enters the open loop dynamics as an amplitude of
a periodic, zero average function. The theory of this control technique has been developed in
Section 5.1. As it has been pointed out in Section 5.1, vibrational control is a useful tool for
achieving two conflicting control goals when only one actuator is available. This is exactly the
case in helicopters where the rotor blade pitch is used to accomplish both the desired aircraft
altitude and the fuselage oscillations suppression.

The application of closed loop vibrational control requires the knowledge of a dynamic model
of a system under consideration. Unfortunately, due to uncertainties associated with dynamics,
measurement data and model structure, the mathematical modeling of helicopters for handling
qualities, performance, and flight control is a very difficult problem. The modeling of helicopters
is further complicated by numerous energy sources which cause fuselage vibrations. These en-
ergy sources are (i) alternating aerodynamics forces acting on the rotors, (ii) engine vibrations,
and (iii) aerodynamics forces acting on the fuselage and nonrotating parts of the machine. The
rotor system, which transmits the vibratory airloads to the fuselage through the rotor shaft, is
one of the most significant contributors to helicopter vibrations [23]. The rotating blades create
vibratory airloads containing all harmonics of the rotor rotational frequency which are passed
from the blades to the pylon and then to the cabin through complicated load paths. These loads
are felt as vibratory forces and moments whose frequencies are integer multiples of the blade
passage frequency (number of blades times rotational frequency). No simple models describing
these phenomena are available. Therefore, for the purposes of this research, we develop a sim-
plified qualitative model of a helicopter and consider only the fixed airframe vibrations excited
by the rotor. Aerodynamic effects are faked as follows: Vibratory air load generated by the
rotating blades is modeled as a periodic function of the rotational frequency. The aerodynamic
perturbations induced by the rotor on the fuselage are modeled also as a periodic function with
frequency equal to the blade passage frequency. Finally, incremental aerodynamic forces gener-
ated by VHHC are modeled by another periodic function with high frequency. For simplicity, all
these functions are chosen as sinusoids, however this choice does not affect the qualitative results
of this thesis.

Using this model, this thesis gives a phenomenological explanation of the efficiacy of VHHC
in helicopter oscillations suppression. The outline of this section is as follows: In Section 5.4.2,
a simple model of a helicopter is developed. Sections 5.4.3 and 5.4.4 are devoted to analysis of
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F/2

F2x
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Figure 4.1: Simple model of a helicopter

this model with and without VHHC in hover and forward flight, respectively. In Section 5.4.5,

the effects of wind gusts are examined.

5.4.2 QUALITATIVE MODEL

Consider a simple, qualitative model of a helicopter shown in Figure 4.1. The platform with
mass m, and the pendulum with mass m2 are intended to model the rotor and the fuselage,
respectively. The rotor generates the lift force, F, and induces aerodynamic perturbations, To,
on the rotational degree of freedom of the fuselage. Force F and torque T# are modelled as

F = Fo+aosinwt, (4.1)
To = #sinNtat,

where F0 is the steady lift due to the conventional rotor blade pitch control, ao sin wt is the peri-
odic part of the lift due to vibratory airload, w is the rotor rotational frequency, N is the number
of rotor blades, ao and P are parameters that model the strength of the periodic components.

When VHHC is introduced, F is defined as follows:

F = Fo + ao sinwt + sin, 0 < 1. (4.2)
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The small parameter f is intended to model the high frequency of VHHC. Although in general
the amplitude of blade feathering is small (i.e. of the order c), the aerodynamic forces generated
by oscillating airfoils are proportional not only to the law of oscillations but also to the first
and second derivative of this law [831. Therefore, the amplitude of the VHHC generated force
is (4.2) is assumed to be 2. Note that the effect of differentiation, mentioned above, has been
observed experimentally in [29] where higher HHC frequencies required smaller HHC amplitudes
to suppress the fuselage vibrations.

The constant part of the lift, F0, is chosen to compensate for the system weight and to
produce a control force to ensure the desired helicopter altitude. Therefore, F0 is defined as

Fo = (Mi + m 2)g - kx (4.3)
cos I4

where g is the acceleration of gravity, p is the rotor tilt angle and k is the gain of the altitude
controller.

In addition to force F and torque T#, two more forces act on the system, F, and Fy. These
are intended to model wind gusts and are assumed to be of an impulsive nature. A specific form
of F, and Fy is described in Section 5.4.5.

Given the system of Figure 4.1 and forces (4.1), (4.2), we write the Lagrange equation for the
platform mi (rotor) and for the pendulum m 2 (fuselage) as follows:

(Min + M2) + m 21i sin0 + m 162 cosO + (Mi + m 2)g- Fcos tu - F. - (i , (4.4)

(Mi + m 2)j + m 2 eecosO - m 216 2 sinO= Fsinp - F1 - (ý , (4.5)

m 2t20 + m 21(i sin 0 + 9 cos 0) + m2 fg sin 0 = To + F., sin 0 + F.1 cos 0 - 76, (4.6)

where x, y and C denote the altitude, horizontal distance and dampling coefficient of the platform
and 0, t and q the angle, length and damping coefficient of the pendulum.

The dynamics of this model are analyzed in Sections 5.4.3-5.4.5 using both a theoretical study
and numerical simulations. For simulation purposes, the parameters involved in (4.4)-(4.6) have
been chosen as follows: m, = 0.01kg, M2 = 0.1kg, t = 1/v/Thim, ¢ = 0.6, 17 = 0.1, k=5, g=9.8
m/sec2, CO =- = 0.1, N=3, w = 1 and e = 0.01.

5.4.3 ANALYSIS: HOVER

To model a helicopter in hover, we set p = 0. Assuming that F. = Fy = 0 and considering
only the vertical and angular motions of the pendulum-platform system, we reduce equations
(4.4)-(4.6) to the following form:

(MI + m 2)i + m 2ti sin 0 + m 2t62 cos 0 + (MI + m 2)g = F - (i , (4.7)

M2 02 + m21(i + g) sin 0 = To - ilO. (4.8)

The effect of VHHC in suppressing the vertical acceleration ; and the angular acceleration 6
of the system (4.7), (4.8) is analyzed by considering three different cases. In the first case, the
system is constrained to move only in the vertical direction (one degree of freedom), i.e. 0 =_ 0.
In the second case, the system is analyzed with no constraint on its angular motion (two degrees
of freedom) but without VHHC, i.e. a = 0. Finally, in the third case we investigate the system
performance with VHHC, i.e. a # 0.
5.4.3.1 One Degree of Freedom without VHHC

If we assume that the pendulum is fixed rigidly to the platform and therefore cannot execute
angular motion, equations (4.7) and (4.8) reduce to the following single dynamical equation:

(in] + Mn)i + (Mi + •2 )g = FO + ao sinwt - (i . (4.9)
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where

A, (4.16)
V/(m2ig - m 2t

2 N 2W2 ) 2 + 77
2 N 2W2

S2.69,

and
a, - tan-1 (m 2 g 7-rn 2wN2

Thus, the steady state angular acceleration is given by:

.,3(t) = -N 2w2 AA,#sin(Nwt + a,) (4.17)

Substituting (4.15) into (4.7), we obtain the steady state solution for the altitude of the platform:

x33(t) = MIcrosin(wt + •,) - (NwAl p) 2M2 m21cos(2(Nwt + a,) + Ql) , (4.18)

where

M2 = (4.19)
/(k - (ml + m2 )4N 2w 2)2 + 4N 2w2ý2

- 0.267,

and

-- (-k - (MI + M 2)4N2W2 "

Thus, the steady state vertical acceleration of the system is:

i**(t) = -w 2M1 ao sin(wt + VI) + 4N 2w 2M 2m 2r(ApNw) 2 cos(2(Nwt + a,) + Ql) • (4.20)

A comparison of (4.20) with (4.12) shows that the two degrees of freedom system exhibits
vertical oscillations with both the rotational and the blade passage frequencies. The latter
component contributes significantly to the fuselage vibrations when the helicopter is in hover
[85]. This leads to a conclusion that, in the two degrees of freedom system, the aerodynamic
perturbations, To, generated by the rotor, excite the fuselage vibrations which then are passed
on back to the rotor. This positive feedback is responsible for the large vertical acceleration of
the system at hand.

This conclusion is supported by numerical simulations of (4.13), (4.14). Results are illustrated
in Figures 4.3 and 4.4 (ct = 0), where equations (4.13), (4.14) are solved under zero initial
conditions. These figures, which are in a good agreement wit estimates (4.15)-(4.20), show that
aerodynamic perturbations, To, excite oscillations of the pendulum with a frequency equal to the
blade passage frequency of 1.5/7r Hz. As a result, the pendulum has an angular acceleration of
the same frequency and an amplitude of about 2.7 rad/s 2 as can be seen in Figure 4.4(b). The
dynamic excitation of the pendulum is subsequently passed on to the platform and generates
additional vertical motion. Compared with Figure 4.2(a), Figure 4.3(a) shows that the altitude
of the platform is excited by both the 0.5/r Hz vibratory airload generated by the rotor and the
3/r Hz vibration due to the oscillations of the pendulum. Thus, as shown in Figure 4.3(b), the
resulting vertical acceleration of the platform also exhibits the effects of both the rotor vibratory
airload and the oscillations of the pendulum. This latter component accounts for the large
vertical acceleration of about 0.2 mrs 2 , i.e., an order of magnitude increase in comparison with
the one degree of freedom system.
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5.4.3.3 Two Degrees of Freedom with VHHC
With VHHC, the vertical and angular accelerations of the system can be obtained by substi-

tuting (4.2) into equations (4.7) and (4.8):

sin Nwt sin Oao sin wt + a-sin(!)) , (4.21)

M1 +M 2  2 M 2  2sin 20 + sin0
m +M 2 - m 2 sin 0 2(m, + m 2) e(m, + m 2)

+ sin 0 - 1 si
e(mn + m 2) t M2 mosin wt sin +

sin sin 0 + - in sNt (4.22)

I(mI + M 2 ) f 
n2

2 s

The terms in the right hand side of (4.21) and (4.22) contain the aerodynamic loads associated
with the rotor vibratory airload, aerodynamic perturbations, and the VHHC. The VHHC term is
of much higher frequency than the other two components. In practice, high frequency component
of the vertical acceleration is attenuated by passive damping in the cabin. It is therefore justifiable
to consider only the filtered, or averaged with respect to high frequency, vertical and angular
accelerations of the system. This is the standard methodology of vibrational control [11]-113],
where high frequency parametric oscillations are introduced in order to improve the averaged (or
filtered) behavior of the system. To obtain the averaged equations we first use the generating
equations technique of [201 that reduces (4.21), (4.22) to the standard Bogoliubov's form and
then use the averaging principle of [21], to derive the averaged equation. For the system at hand
the resulting averaged equations are (see Appendix A2 for details)

1 (14 sin4'+m 2 gsin2q_
M m+M2 -rn 2 sin 2  4'

(~ -a 2 sin• 2o 2)2 02)

-m~e 2P(ml + m 2 - m 2 sin

cos4'-kz-( i- .jsinNwtsin4'+aosinwt) (4.23)

- mi + M in in2 (M 2 (a ~2 sin 2 04 si 2 0)2
S=MI + M2 - M2, sin GM 21r+'M2) (20(m, + m2 - M2 sin #)

2m 20(mi + M2 - m 2 sin2 4) sin 24
kz sin 0 + (i sin 4--sin '- 17

+I(M) +M2) (M, +M2) 2

I(mi+m2 ) a0 sin wt sin 0 + I P sin Nwt (4.24)

where z and 4 denote the averaged altitude and angle, respectively.
Comparing (4.21), (4.22) and (4.23), (4.24), we observe that the introduction of VHHC results

in additional terms containing amplitude a. To analyze the effects of these terms, we first reduce
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(4.23), (4.24) to the form (4.7), (4.8). Then, since 0 is small, we negiect the first term containing
Q' in (4.24) and approximate the denominator of the remaining term containing a' by m1 + mn 2 .
Hence we write (4.23), (4.24) as:

(MIn + m2 ). + rnM2  sin P + M 2 fý2cos6 = a0 sin wt - kz - . (4.25)

m 2e'4) + m 2e + g + a2± C sins = sin Vwt - i7. (4.26)

Equation (4.25) is identical to (4.7) but unlike (4.8), equation (4.26) has an additional term
containing a. Since the vertical acceleration - of the fuselage is generally of the order of 0.1g [84).
for small 0 we can neglect the term m2f.• sin 4 and replace sin 0 by 0 and cos 0 by 1. Then the
steady state solution of (4.8) can be represented as

0.,(t) = A 2 3sin(Nwt + a2)

where

A21 222+722O (4.27)
V(m 2tg + 2 - msg•N 2w2 )2 + i12Nsw2

S0.23, for a = 1,

and

02 = - tanif (M 24g + M(.+ 2- m 2 e2N2w2

A comparison of (4.27) with (4.16) shows that the VHHC term in (4.26) leads to an order
of magnitude reduction of the angular vibrations of the fuselage, i.e. to the stiffening of the
system. As it follows from (4.20) (with A,, replaced by A2 and a, by 02), this results in an
order of magnitude reduction in the vertical acceleration of the system. Therefore, the effect of
VHHC can be interpreted as the decoupling of the positive feedback from the rotor through the
aerodynamic perturbations to the fuselage and then back to the rotor.

This conclusion is supported by numerical investigation of (4.23), (4.24) (see Figures 4.3 and
4.4 for a 9 0): Figure 4.4(a) shows that VHHC significantly reduces the oscillations in the
pendulum induced by the rotor vibratory airload. The resulting vibratory load suppression in
the angular acceleration is illustrated in Figure 4.4(b). The attenuation of the oscillations in the
pendulum produces a reduction in the dynamic load transferred back to the platform. As can
be seen in Figure 4.3(a), the 3/7r Hz vibrations generated by the oscillations in the pendulum on
the vertical motion are greatly attenuated. Note that this attenuation improves as the amplitude
of VHHC is increased (see Figure 4.5). For a = 1, the effect of these oscillations is virtually
eliminated. In particular, the steady state vertical acceleration is about 0.02 m/s'. The 3/r
Hz vibration due to the oscillations in the pendulum has been eliminated and the remaining
vibration in the vertical acceleration is at a frequency of 0.5/7r due to the rotor vibratory airload
aO sin wt. Thus, the introduction of VHHC forced the model to behave almost as a one degree
of freedom system.

5.4.4 ANALYSIS: FORWARD FLIGHT

To6 study the performance of a VHHC-equipped helicopter in forward flight, we consider
equations (4.4)-(4.6) and assume that there is no wind gusts, i.e. F, = Fy = 0. Similar to Section
5.4.3, we analyze the efficacy of VHHC in suppressing the vertical acceleration i, horizontal
acceleration j and angular acceleration 0 by considering three different cases: (i) the system is
constrained to move only in the vertical and horizontal direction (two degrees of freedom), (ii) the
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system has no constraints on its angular motion (three degrees of freedom) but without VHHC,
i.e. a = 0, and (iii) the system with three degrees of freedom and with VHHC, i.e. n $ 0. \Ve
assume that the system's parameters are the same as those defined in Section 5.4.2 and choose
p = 5 deg.
5.4.4.1 Two Degrees of Freedom without VHHC

If the system (4.4)-(4.6), with F. = Fy = 0, cannot execute angular motion, then the system's
dynamics are governed by the following two equations:

(Ml + m 2 ): + (Mi + M2)g = (F0 + ao sin wt) cosp - , (4.28)

(MI + m2)h = (Fo + caosin wt)sinp -ý . (4.29)

Here again we observe the absence of the coupling terms due to angular motion. The response of
the vertical and horizontal acceleration is affected only by Fo and a0 sin wt and no blade passage
frequency is involved. Numerical solutions of (4.28), (4.29) are illustrated in Figures 4.6 and 5.7
for 0.155 m/sec initial horizontal velocity and all other initial conditions equal to zero. From
these figures we conclude that steady state vertical and horizontal accelerations are small (about
0.02 m/s 2 and 0.002 m/s 2 respectively) and are of 0.5/7r Hz frequency due to the rotor vibratory
airload a0 sin wt.
5.4.4.2 Three Degrees of Freedom without VHHC

Consider equations (4.4)-(4.6) with angular motion but without VHHC (i.e. a = 0). The
vertical, horizontal and angular accelerations can be expressed as:

M M2 0 M2tsinO -1.~M2 t6 G (MIn + M2)g + FCos p-
0 mI +m 2 m 2 tcosO m2t92 sinO + F siny -

Sm 2tsine M2 1COSO M2 t 2  I -M2egSin0 + To - j•d

(4.30)

where F is given in (4.1). An approximate analysis of these equations can be carried out
by using the method of Section 5.4.3.2. Here, however, we investigate the response of system
(4.30) by performing simulation of these nonlinear equations with an initial horizontal velocity
of 0.155 m/sec and all other initial conditions equal to zero. Similar to Figure 4.4(a), in Figure
4.10(a) with a = 0 we observe that the aerodynamic perturbation To generates oscillations in the
pendulum with a frequency of 1.5/7r Hz. These oscillation are, in turn, transferred back to the
platform and produce additional motion in the vertical and horizontal directions. Thus, as shown
in Figures 4.8(a) and 4.9(a), the resulting steady state altitude and horizontal velocity display
the effects of both vibratory airload a0 sin wt and the oscillations of the pendulum. Again, this
latter component accounts for most of the vertical and horizontal accelerations.
5.4.4.3 Three Degrees of Freedom with VHHC

With VHHC, the system's dynamic equations are governed by equations (4.30) with F de-
fined in (4.2). As mentioned in Section 5.4.3.3, the high frequency component due to VHHC
is filtered out by passive damping of the cabin, and hence it is of interest to consider the fil-
tered vertical, horizontal and angular accelerations of the system. Using the generating equation
method proposed in [20], we reduce (4.30) to the standard Bogoliubov form and apply averaging
analysis [21]. The averaged equations obtained are as follows (see Appendix A2 for details)

Im2(calpsin2#+sinpco&2#) mjjý-2c e= m2 sin 2 _ sin1[ m(m,+m,) m 2) 2m,tm,+m, 2 M1
m2(com p sin 2#-uncoo 2#) , sin# mj+2-mga • C•.5Smt(-Im 1 1~ 2 t+M Z~;I mjt(rn+m3) m ml/

O(sin, 0 in #-co,/ o , 1" ,), -- Mn,_e.t
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a (si fCOcsp +coo oin- L)

-m 2 e o2 + coso - k: + a0cospsinWt -

M2o2* (Z).. sin o + (m, +m 2 )gtanp -k.tanp+ aosin p sin.A -•p-mt9sin < + To -n+(

(4.31)

where z, v and 0 represent the averaged altitude, horizontal distance and angle respectively.
The effects of VHHC when a helicopter is in forward flight and when a helicopter is in hover

are very similar: VHHC suppresses the oscillations of the pendulum induced by aerodynamic
perturbations To; this, in turn, leads to a reduction of the dynamic load passed on back to the
vertical and horizontal motions. This can be verified by performing the same analysis as in Section
5.4.3.3. The effectiveness of VHHC in suppressing the vertical and horizontal accelerations when
the helicopter is in forward flights is also illustrated by simulating nonlinear equation (4.31) with
the initial horizontal velocity of 0.155 m/sec and all other initial conditions equal to zero. For
clarity of illustrations, we present here the simulations only for a = 0.25 (other values of a are
characterized in Figures 4.11 (a) and (b)). As it can be seen from Figures 4.8 and 4.9, the 3/7r
Hz vibrations in the vertical and horizontal motion are greatly attenuated. By comparing with
Figures 4.6 and 4.7, we notice that VHHC stiffens the pendulum and forces the model to behave
as a 2 degrees of freedom system. We observe in Figure 4.10(a) that with VHHC the steady state
angular position of the pendulum is perpendicular to the platform. Since the angular position of
the pendulum is initially at zero, this accounts for the large transient overshoots in Figures 4.8
and 4.9.

5.4.5 EFFECTS OF WIND GUSTS

Next we analyze the effects of wind gusts on the performance of VHHC-equipped helicopters
during forward flight. We introduce impulsive perturbations F. (at t = 1 sec and t = 4 sec)
and FU, (at t = 2.5 sec and t Z 4 sec) into the system; the pulse duration and amplitude,
respectively, are: 0.5 sec and 0.1 N. As it follows from Figures 4.12 and 4.13, VHHC still cancels
the vibrations. However, since the gusts F. and Fy enter the system's equations directly in (4.4)
and (4.5), VHHC is not very effective in suppressing their effects on the vertical and horizontal
accelerations of the system.

51



0.03

0.02

0.01

0

-0.01

-0.02-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.2: (a) Altitude of helicopter in hover (1 degree of freedom)

0.25

0.2

0.15

0.1

0 -. 05

-0.1

-0.15

-0.2-

0 0.5 1 1.5 2 2-5 3 3.5 4 4.5 5

Time (sec)

Figure 4.2: (b) Vertical acceleration o helicopter in hover (1 degree of freedom)

52



0.03

S- alpha =0

0.01

-0.01

-0.03'

-000 0.5 1 1.5 2 .. 3.5 4 4.5 5

Time (sec)

Figure 4.3: (a) Altitude of helicopter in hover (2 degrees of freedom)

0.25

0.2-

0.15

0.1-

0- ----- ---

0.05 - - a-- --. . . ..--- ----- ------ -- ---- - - - -

-0.05-

-0.1-

-0.15-

-0.2 - alpha = 0
-- alpha= 1

-0.25
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.3: (b) Vertical acceleration of helicopter in hover (2 degrees of freedom)

53



0.3

- alpha =0

-- alpha = 1

0.1

fto ---

-0.1

-0.2

-0.3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.4: (a) Angle of the fuselage in hover (2 degrees of freedom)

2.5

2

1.5 -

0.5

-1

-1.5-

-2 - alpha = 0

-- alpha 1
-2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.4: (b) Anglular acceleration of the fuselage in hover (2 degrees of freedom)

54



0.2

0.18

0.16

0.14

0.12

.• 0.1

S0.08

0.06

0.04

0.02

0,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Alpha

Figure 4.5: Vertical acceleration of helicopter in hover for different a

55



0.03

0.02-

0.01

. 0

-0.01

-0.02

-0.03 ' -
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.6: (a) Altitude of helicopter in flight (2 degrees of freedom)

0.4

0.3

0.2

0.1

S-0.2-

-0.3

-0.4-

-0.5

-0.6 '"','''
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.6: (b) Vertical acceleration of helicopter in flight (2 degrees of freedom)

56



0.5

0.45

0.4

0.35

S0.3 -

. 0.25

> 0.2

0.15

0.1

0.05

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.7: (a) Horizontal velocity of helicopter in flight (2 degrees of freedom)

-1

-2

S-3

-4

-5

-6 1 I I I
"0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.7: (b) Horizontal acceleration of helicopter in flight (2 degrees of freedom)

57



0.5

0.45

0.4 - alpha = 0
0.3 -- alpha =0.25

0.35

- 0.3

.•' 0.25

> 0.2

0.15 - ----- -

0.1

0.05

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.9: (a) Horizontal velocity of helicopter in flight (3 degrees of freedom)

-alpha =0

j-5

-- alpha = 0.25

-6
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.9: (b) Horizontal acceleration of helicopter in flight (3 degrees of freedom)

59



0.03

02- alpha = 0

02alpha 0.25

0.01

-0.01

-0.02-

-000 0.5 1 1.5 2 2.5 3 35 4 4.5 5

Time (sec)

Figure 4.8: (a) Altitude of helicopter in flight (3 degrees of freedom)

0.4

0.3

0.2

0.1 !C4
'• -0.1

-0.2

-0.3

-0.4- alpha= 0

-0.5 -- alpha =0.25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.8: (b) Vertical acceleration of helicopter in flight (3 degrees of freedom)

58



0.3

0.2-
-alpha= 0

-- alpha 0.25

0.1-

0

0.1

-0.2

-0.31
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.10: (a) Angle of the fuselage in flight (3 degrees of freedom)

20

15 -alpha =0

-- alpha = 0.25

S 10:

S 5i

-5

-10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.10: (b) Angular acceleration of the fuselage in flight (3 degrees of freedom)

60



0.18

0.16

0.14

.- 0.12

0.1-

o0.08

< 0.06

0.04-

0.02

0I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Alpha

Figure 4.11: (a) Vertical acceleration of helicopter in flight for different a

0.35

0.3

0.25

S0.2

"M 0.15

0.1

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Alpha

Figure 4.11: (b) Horizontal acceleration of helicopter in flight for different a

61



0.04

0.03

0.02- alpha 0
0.01 J° -- alpha =-.25

0.01

£ 0

":a -0.01

-0.02
-0.03-\•

-0.*04

"000 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.12: (a) Altitude of helicopter in forward flight with wind gust

4

3

2

0f -- -- ----- ------

-2l -alpha =0

- alpha = .25

"0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.12: (b) Vertical acceleration of helicopter in flight with wind gust

62



0.6

0.5

- alpha = 0

0.4 -- alpha =.25

0.34

0.2-:

0.1

0

-0.11
"0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.13: (a) Horizontal velocity of helicopter in flight with wind gust

6

4

- alpha =0

2 -- alpha =0.25

0 " " - "- -- ---------

-2

-4

-6

"0 o.s 1 1.5 2 2.5 3 3.5 4 4.5 s

Time (sec)

Figure 4.13: (b) Horizontal acceleration of helicopter in flight with wind gust

63



5.5 PART 5. H2-OPTIMAL ZEROS

5.5.1 INTRODUCTION

Another important aspect in the control design of systems, besides ensuring sufficient number
of actuators as discussed in Section 5.1, is to determine the location of the control system
components, namely actuators and sensors. In this part of the report, we treat this problem by
considering a linear time-invariant SISO system of the form

i(t) = Ax(t) + Biu(t) + B 2w(t) , (5.1)
y(t) = Cx(t) , x•E R", u, w,Y E JR.

In the design stage of the system (5.1), when no actuator positioning and disturbance protection
measures are yet finalized, input vectors B1 and B2 may be viewed as free parameters to be chosen
so that appropriate performance specifications are satisfied. Among these, it seems reasonable
to require that the transmission from the control u to the output y be maximized and the
transmission from the disturbance w to y be minimized. The term "transmission" could be
formalized in a number of ways. We choose here a formalization in terms of transfer functions.
Specifically, we say that the transmission from u to y is maximized if the H 2-norm of Ga,(s) :=
C(sI - A)-1 B1 is maximized with respect to all Bi E Wr' such that 11B111 = 1 (11 "I denotes
the Euclidean norm of a vector). Similarly, the transmission from w to y is minimized (i.e. the
disturbance rejection is optimized) if the H 2-norm of G,,,(s) := C(sI - A)-`B 2 is minimized with
respect to all B2 E 1R' such that 1IB211 = 1. Since a choice of B, and B2 defines, for a given
A and C, the system's zeros, optimal B1 and B2 define the zeros, optimal with regard to the
above stated criteria. The purpose of this research is to give a solution to the H2-optimal zero
placement problem for open and closed loop system (Sections 5.5.2 and 5.5.4) and characterize
control-theoretic properties of the resulting system (Section 5.5.3). In addition, we analyze the
relationship between the open and closed loop H 2-optimal zeros (Section 5.5.5).

Since the L,, norm of y is often used for control system performance specifications, the H2-
norm as a measure of optimality seems quite reasonable because it is induced by the L2 norm
on the input and the L,. norm on the output [86]. Other measures of optimality are, however,
possible. For instance, Hughes and Skelton [87] optimize the controllability and observability
"norms" to ensure good actuators and sensors configuration. Optimization of controllability,
observability or the information matrix has been addressed in [39], [901, and [91]. An LQ-type
approach is developed in [48]. In [38], actuator location has been addressed under a control effort
saturation assumption. The H2-optimization of this paper is related to the above cited literature
because sensor and actuator locations typically determine the matrices C and B1 respectively. In
the present work, however, we assume that the directions of B1 and B2 can be chosen arbitrarily
whereas in practical applications components of vectors B1 and B2 might be functionally related.
Accounting for these functional relationships will be a topic of future work.

5.5.2 H 2-OPTIMAL ZEROS IN OPEN LOOP ENVIRONMENT

5.5.2.1 Problem Formulation
Consider an asymptotically stable SISO plant defined by a transfer function G(s) = C(sI -

A)-'B. Assume that vector B is subject to the constraint

BTMB=1 , (5.2)

where M is a symmetric, positive definite matrix.
The problem of H2-optimal zero placement in open loop environment is formulated as follows:
Find vector B, satisfying (5.2), such that IIGI2 is maximized (minimized).
Remark 5.1: A natural choice for M in (5.2) seems to be M = I, resulting in IIBiI = 1. It

turns out, however, that this normalization may lead to a coordinate dependent optimal B and
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consequently coordinate dependent zeros (see Section 5.5.3.3). If (C. A) is observable, a better
choice is

Mf = CTC + ATCTCA +... + (A"' )TCTCA"-I

resulting in the normalization

(CB)2 + (CAB) 2 +... + (CA"- 1B) = 2 . (5.3)

Since CB, CAB,..., CA"- 1 B are the Markov parameters of G(s) and since

CA'B -d'g(t)'

CA'B = d ) =o,..,,,
dt, It=o+'

where
g(t) =C-'{G()},

the normalization (5.3) constrains B to those that satisfy

S[d g(t) 2 . (5.4)

i= I t=0+

Thus, the optimal B is selected from all those that result in an impulse response which at t = 0'
satisfy the normalization (5.4). This in fact defines a unit sphere in the space of impulse responses
of SISO, LTI systems of dynamic order at most n. It turns out that this normalization gives
a coordinate independent optimal B and as a consequence, coordinate independent zeros (see
Section 5.5.3.3).
5.5.2.2 Main Result

Theorem 5.1: Assume that A in (5.1) is Hurwitz and M in (5.2) is positive definite
and symmetric. Let L. be the observability Gramian, defined by ATLO + LoA + CTC = 0.

Then mnax JGuB1 ( min mIG,112) is attained at Bj* (B2 *) collinear with the eigenvector

of M-'L. corresponding to its largest (smallest) eigenvalue Amax(Amin). Under this choice

max JIG.II2 = Amax ( min IIG..II= Amin).BT•MBI=l (B2 MB2= 1
Proof: First, note that M-1L. is a product of two symmetric, positive definite matrices

and so its eigenvalues are real and positive. Second, we observe that since JIGII2 = BTLOB (see
[92]) and since (.)2 is a monotonic operation, the Lagrangian for the problem at hand is

L(B,7 , A) = 7 (BTLoB) - A(BT MB - 1),

where the multipliers -y, A E R are not simultaneously zero. The first order necessary condition
is [93]

VBL = -LOB- AMB = 0,

which yields
7 M-1LoB = AB .

Since BTMB = 1,-f = 0 implies A = 0. Hence, it can be assumed without loss of generality
that -y = 1. Furthermore, A > 0. Thus, any optimal B* should lie along the direction of an
eigenvector of M- 1L. and

IIGI'll = B.TLOB" = AB°TMB* = A
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Hence,

max JIG.,,1' = BI LOB, = Ama•xB TrB = Amax
BMBI = 1  

2

min IIG,,I2 = B TLoB; = AminB;2MB;= Amin
BTMB 2=i

Q.E.D.
Remark 5.2: Theorem 5.1 can be reformulated for choosing the measurement vector C

to maximize (minimize) the H2-norm of a transfer function G(s) = C(sI - A)-1 B subject to
CMCT = 1. The optimal C* lies in the direction of the left eigenvector of LCM-' corresponding
to the largest (smallest) eigenvalue of LM-1 for maximum (minimum) uIG112 , where L, is the
controllability Gramian, defined by AL, + LCAT + BBT = 0.

Remark 5.3: For optimal disturbance rejection, when the pair (C, A) in (5.1) is not observ-
able, Theorem 5.1 yields a choice of B2 corresponding to a null eigenvector of M-iLo. This choice
leads to the invariance of the output with respect to the disturbance, i.e., (CB2 CAB 2 ... CA"-I B2 ]
"-0.

Remark 5.4: For unstable SISO systems, one can introduce the notion of a a-shifted H2-
norm defined as follows:

IG11IL = f (Ce(A-')*B) 2 dt
= CLwCT=BTLo•B, a>0,

where a is chosen so that (A - a1) is Hurwitz, and L,, and L,,, are the controllability and
observability Gramians of the pair (A - a1, B) and (C, A - aI) respectively. Here, the optimal
B* would then lie along the direction of the eigenvector of M- L.,, corresponding to the largest
(smallest) eigenvalue of M- 1 Lo. for maximum (minimum) I JGJ12a.

5.5.3 QUXLITATIVE PROPERTIES OF OPEN LOOP SYSTEMS WITH THE
H 2-OPTIMAL ZEROS

This section examines several control-theoretic properties of systems with the input vector
chosen according to Theorem 5.1. The dual results for the optimal measurement vector C can
be obtained similarly.
5.5.3.1 Optimal Control Effort

The optimal transmission from u to y is formalized in Section 5.5.2 as the H2-optimization
of the corresponding transfer function. A question arises : What does H 2-optimization of G(s)
means in terms of the control effort necessary to accomplish a given task. An answer is given
below.

Consider the system,

i(t) = Az(t) + Bu(t) , (5.5)
y(t) = CX(t). XE WR",u,y E IR

Let U be the set of all bounded measurabi -ontrols u(t) that transfer (5.5) from the initial
condition z(0) = xo to a final condition satis ig y(ti) = yi during [0, t1 ]. Define

J(xo, y1 ,ti) = mrin j1 u2(r)drU(t)C-U fo

Theorem 5.2: Assume that A in (5.5) is Hurwitz and M in (5.2) is positive definite and

symmetric. Then min lim J(xo, y,,ti) (max lim J(xo, y,,t,1 ) is achieved at B which is
BTMB=1 t3-o0 \B T MB-I ti-..oo /

collinear with the eigenvector of M-1 Lo corresponding to its largest (smallest) eigenvalue.
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Proof: First we prove that

J(xo, Yi ,ti) (y, - Ce 4 (5 xo)6o , t , CeA(ti-r)BBTeAr(tj--)CTdr (5.6)

Indeed, a control u0 (t) that transfers (5.5) from the initial condition x(O) = xo to a final
condition satisfying y(tl) = yj over [O,tl] can be calculated as follows:

u°(t) = BTeAT(tl-t)CTW-1(O, t1 )[y -_ CeAtIxo], t E [0, t], (5.7)

where
W(O, ti) = CeA(t1-,?)BBTeAr(t1-r)CTdr 

.

This control is optimal in the sense that if ul(t) is any other control in U, then

f (ul~tj))2  > j
t l (uO~t)) 2 dt .(5.8)

To prove this we note that

Y1 - CeAt'Xo ceAl-j-r)Bu°(r)d= CeA(t,-')Bul(r)d•

Therefore,

fo CeA(t2-)B(u'(T) - u°(T))dr = 0

Then

W- 1 (o, t) [y, - Ce I fo] jo CeA(i1-)B(ul(r) - u°(T))dr = 0

which is equivalent to

f"tl (UI(r) - UO(T)) (CeA(t--)B) T W-1 (0, tl) [Y, - CeAtlxo] dT = 0

From the last expression and (5.7), we obtain

0o (U'(7) - uo()) uO(r)d7 = 0

Therefore,

IO" (ul(r))2 dr = ot l ( r(T)- uo(r)+ uo(r)) 2 d

= t J U'(7) --)Uo(7)) 2d 2 d-+ (uo(r)) ,dT

+2j (ul(r) - uO(r)) Uo(r)d,

J U' ( 7-() -Uo(T)) 2 dr+ +I" (uo(T))• 2 •dr

which results in (5.8).
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Thus, it follows from (5.8) that the minimum energy required to transfer the system (5.5)
from x(O) = xo to a final condition satisfying y(tj) = y, is indeed given by (5.6). tlence if .4 is
Hurwitz, 2

lim J(Xo,y'1 , ti) -- (5.9)
"t-00 T ýBT L o5J "

Since BTLoB, subject to the constraint BTMB = 1, achieves its maximum (minimum) at B
collinear with the maximum (minimum) eigenvalue of M-'Lo, Theorem 5.2 is proved. Q.E.D.

Theorem 5.2 offers an alternative characterization of H 2-optimal transmission: The optimal
B1 (B;) ensures minimum control (maximum disturbance) energy in transferring the system
state from an arbitrary initial state to a final state, consistent with the specified output, over an
asymptotically infinite time interval.
5.5.3.2 Controllability Properties

As stated in Theorem 5.1, system (5.1) with B1=B1 * has H2-optimal (maximal) transmission
properties from u to y. A question arises: Is there always at least some transmission from u to
every component of x in such a system? An answer is given below.

Theorem 5.3: Assume A in (5.1) is Hurwitz, M in (5.2) is positive definite and symmetric
and the maximum eigenvalue of the matrix M-1L0 , where Lo is the observability Gramian of
(5.1), is simple. Then system (5.1) with B1=Bl* and B2 = 0 is controllable if and only if there
exists no left eigenvector of A orthogonal to the eigenvector of M-1 Lo corresponding to its largest
eigenvalue.

Proof: Follows directly from Theorem 5.1 and the PBH controllability test [94]. Q.E.D.
Theorem 5.4: Assume A in (5.1) is Hurwitz and BI=B1 *, B 2 = 0. Assume further that

M = I, the observability Gramian Lo has distinct eigenvalues and rank [rn&-L.%] = n. Then

system (5.1) is controllable only if (Lo, LoAT - ATLo) is observable.

Proof: The theorem is proved by contradiction. Suppose B1 = Bj' and B2 = 0. If
(Lo, LoAT - ATLo) is unobservable, then for some A, there exists x :A 0 such that

LoAT_- A TLo X = 0

i.e. L 0ATX = AATx, 7 #Amax•
Since A is a simple eigenvalue of L. with a unique eigenvector x, this implies that ATX must
be collinear with x, i.e. there must exist p such that ATx = px. This shows that XT is a left
eigenvector of A. Since both, x and Bl*, are eigenvectors of Lo,

xT B; = 0,

XT A = pXT.

Therefore, according to the PBH test, system (5.1) with BI=Bl* and B2 = 0 is uncontrollable
[95]. Q.E.D.
5.5.3.3 Coordinate Independence

Theorem 5.1 may yield optimal B1 and B2 which result in coordinate dependent zeros. The
following statement gives condition on M which ensures coordinate independence.

Theorem 5.5: Assume that A in (5.1) is Hurwitz and M in (5.2) is positive definite and
symmetric. Let S be a similarity transformation and M be the representation of M in the new
basis. Then system (5.1) with BI=B,; and B 2=B2 yields zeros which are independent of the
coordinate transformation S if M - STMS.

Proof: From Theorem 5.1, B,* and B, satisfy

M-'LoBr = AmaxB•,

M-'LoB; = AminB;.
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Under the similarity transformation S, system (5.1) has the following representation:

A = S-AS, B1 = S-'B1 , i32 = S-B 2 , C = CS and L" = STLoS .

The optimal b,[ and f are given by if Lo!B[ = Amax!bl and -l B = Ab; nh; respectively2 minB epcieyi.e.,

Mk-STLoS B = AmaxB[ and MI-STLoSB = Aminb;.

Hence, if Af!= STMS,

b; = S-'B; andf; = S-BB.

Since optimal B* and B; are related to B" and B;, respectively, by the transformation S, the
zeros defined by B• and B; are independent of the coordinate transformation S. Q.E.D.

If M = CTC + ATCTCA + ... + (A?-1)TCTCAn-, then M = ST(CTC + ATCTCA +
•.. + (A'-1)TCTCAn-1)S = STMS. Therefore this normalization indeed results in coordinate
independent zeros. If, however, M = I, the resulting H2-optimal zeros may be coordinate
dependent. Indeed, consider the system (5.1) with M = I and A, C as follows:

A=[-3 1] C= [1 01
-2 0

In this case, B,* is given by

so that the zero of the system is at 0. Introducing the similarity transformation

S= 1 3 '

results in

-1 0 "

This gives

and the zero lies at -3.277. Hence, the normalization M = I may lead to coordinate dependent
zeros.
5.5.3.4 Non-minimum Phase Properties

It should be pointed out that the transfer functions Ge(s) and G.(s) associated with the
optimal vectors Bj* and B, may not be minimum phase.

Theorem 5.6: Assume M = I and the maximum and minimum eigenvalues of the
observability Gramian Lo are different. Suppose (5.1) is in the observer canonical form with
B, = B[ and B2=B2. Then at least one of the transfer functions, G,,(s) or G,,,(s), is non-
minimum phase.

Proof: For system (5.1) in the observer canonical form, the elements of vectors B• and BO
correspond to the numerator coefficients of the transfer functions G,,(s) and G,,,(s) respectively.
Thus, G,,(s) and G,(s) are minimum phase only if all the elements of B* and B* are of the
same sign. We show below that this is, in fact, impossible. Indeed, B1 and h2 are collinear with
two eigenvectors of the observability Gramian L. As a symmetric matrix, Lo cannot have two
eigenvectors with all components of the same sign. To prove this, assume that x and y are two
eigenvectors of L0 , associated with two eigenvalues, A and p (p #6 A) respectively. Assume that
x has all components of the same sign. Then, since x and y are orthogonal, i.e. ' xjyj = 0,
not all components of y are of the same sign. Thus, B,* and B2 cannot have all components of
the same sign. Q.E.D.
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5.5.4 H 2-OPTIMAL ZEROS IN CLOSED LOOP ENVIRONMENT

5.5.4.1 Problem Formulation
In the closed loop environment, a number of problems concerning H2-optimal zeros can be

formulated. The following three are of importance in various control-theoretic situations:
5.5.4.1.1 H 2-optimal zeros in the disturbance rejection problem

Here the system (5.1) is considered in a closed loop form, for instance, with u = Kx. Define
G(s) = C(sI - A - BIK)B 2 and we want to choose B2 such that JIGI12 is minimized subject to
JIB 211 = 1 (or BTMB 2 = 1, M = MT,M > 0). Obviously, if (A+ BIK) is Hurwitz, the answer to
this question follows from Section 5.5.2 above: The optimal B2 is collinear with the eigenvector
of the closed loop observability Gramian, Lc', corresponding to its smallest eigenvalue. Here Lc'
is defined by

(A + B1 K)TLcl + Lc'(A + B 1K) + CTC = 0.

Due to the separation property, the same result holds not only for state feedback, but also for
observer-based output feedback.
5.5.4.1.2 H2-optimal zeros in the regulator problem

Consider the system

x = Ax+Bu, (5.10)
y = Cx, xERB',u,yElR

E{xo} = 0, E{xoxT} =Q,

where xo = x(0). Assume that u = Kx, (5.11)

where K is chosen so that

J = E fjf (XCTI + u2) dt} (5.12)

is minimized. If (A, B) is stabilizable, (C1 , A) is detectable, it is well known that the optimal K
is given by

K == -BTp, (5.13)

where P is the positive semi-definite solution of

ATp + PA - PBBTP + C"TC1 = 0. (5.14)

The optimal value attained by functional (5.12) with feedback (5.13) is:

J* = Tr(PQ) . (5.15)

Obviously, the value J* may be further improved by minimizing J* over all admissible vectors
B. To cast this problem in H 2-norm minimization form, we define Q = BIBT and rewrite (5.14)
as

(A - BBT P/ 2 )Tp + P(A - BBT P/2) + CTC1 = 0 . (5.16)

Hence
J* = Tr(PBIBT) = Tr(BIPB[), (5.17)

and from (5.16) and (5.17), the functional J* is equivalent to the square of the H 2-norm of the
following transfer function

Gi(s) = C 1(sI - A - BK/2)'BI • (5.18)
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It should be noted that the matrix (A + BK/2) is Hurwitz due to the fact that LQ designs have
a guaranteed gain margin from 1/2 to +oc [96]. Also, for a given A. B1 and C1, the choice of B.
which determines K, will generally affect both the zeros and poles of the transfer function Gj(s)
(see Example 5.2).

Thus, the problem of H2-optimal zero placement regulator problem can be stated as follows:
Given (5.10), (5.11), (5.13) and (5.14), find vector B satisfying the constraint IIBII = 1 (or

BTMB = I, M = M', M > 0) such that IUGJ 112 is minimized.
A necessary condition for the solution of this problem is given in Section 5.5.4.2.

5.5.4.1.3 H2-optimal zeros in the servomechanism problem
Consider again system (5.10) and assume that

u = Kx + v , (5.19)

where v is an exogenous signal. The control gain K is assumed to be chosen according to the
designer's favorite methodology, such as pole placement, LQG, HI, design, or any other. The
problem of H 2-optimal zero placement in the servomechanism problem is formulated as follows:

Given (5.10) and a design methodology for K, find B satisfying IIBII = 1 (or BTMB = 1,
M = MT, M > 0) which maximizes IIGv112 where

G,(s) = C(sI - A - BK)-'B . (5.20)

A solution to this problem is given below under the assumption that K is designed using the
LQR approach, i.e.,

K = -BTp,

ATP + PA - PBBTP + CTC1 = 0.
Remark 5.5: As it follows from (5.18) and (5.20), the main difference between the open and

closed loop H 2-optimal zero placement is in the fact that in the latter case, vector B affects not
only the zeros but also the poles of the transfer function.

Remark 5.6: The problems formulated above can be extended to dynamic output feedback
as well. Indeed, assume that we use a controller

u = Ki+v, (5.21)

x = A,+Bu+L(y-Ci). (5.22)

Then, it is well known that the closed loop transfer function from v to y is also given by (5.20).
5.5.4.2 Main Result
5.5.4.2.1 H 2-optimal zeros in the regulator problem

Theorem 5.7: Consider the closed loop system (5.10 ), 5.11), (5.13) and (5.14). Assume
that (A, B, C1 ) is stabilizable and detectable. Then min fjG3( 2 is attained at vector B only if

IOBIk=1
it is collinear with an eigenvector of matrix S = PGP, i.e.,

(PGP - AI)B = 0, (5.23)

where P, G E RW'", are defined by

(A - BBTP)TP + P(A - BBTP) + PBBTp + C1cI =0, (5.24)

(A- BBTP)G+G(A- BBTp)T + B 1BT =0. (5.25)

In addition,
IlGjIIl = A+ CGC[.
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Proof: The Lagrangian for the problem is

L(B,P,G,-, A) = 7BTPBI + Tr(G[ATp + PA - PBBTp + CTC 1I]) + A(BTB - 1),

where -1, A E 1R and G E R"', G = GT, are the Lagrange multipliers which are not simultane
ously zero. The first order necessary conditions for an extremum are as follows:

=L =7BiBT +AG+GAT - GPBBT BBPT pG=O,OPI
8L-9 = -2PGPB+2AB=O.
OB

Since A - BBTP is stable with (Cl, A) detectable, -y = 0 implies A = 0, G = 0 in the above
equations. Hence, it can be assumed without loss of generality that -y = 1. Furthermore, G is
nonnegative definite.

Equations (5.23) and (5.25) are thus obtained and (5.24) is equivalent to (5.14). From (5.25),
we have

Tr(PBBT) = -Tr(P[A - BBTPIG) - Tr(PG[A - BBTp]T)
"- -2Tr(P[A - BBT P]G)

= -2Tr(PAG) + 2Tr(PBBT PG)

= -2Tr(PAG) + 2BTPGPB.

From (5.23), (5.24) and knowing BTB = 1, we have

IIGjII = Tr(PBIB T)
= -2Tr(PAG) + 2A

= -A+CGCIT+2A

= A+CIGCT *

Q.E.D.
5.5.4.2.2 H2-optimal zeros in the servomechanism problem

Theorem 5.8: Consider the closed loop system (5.10),,(5.19), (5.13) and (5.14). Assume
that (A, B, C1 ) is stabilizable and detectable. Then max IIGII is attained at vector B only if

it is collinear with an eigenvector of matrix S = Lei - PGP - 2PLILo', i.e.,

(Lc'- PGP - 2PL Lo' - AI)B = 0, (5.26)

where P, L"', G and Lc' E WR"" are defined by the following equations:

(A - BBTP)TP + P(A - BBTP) + PBBTP + CITC , = 0, (5.27)
(A - BBTP)TLI + L'(A - BBTp) + CTC - 0, (5.28)

(A - BBTp)G + G(A - BBTP)T - LiLc'BB T - BBTLeLLtL 0, (5.29)
(A - BBTP)Lcc + Ld(A - BBTp)T + BBT = 0. (5.30)

In addition,
max IIG II1 = CL ICT .
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Proof: By forming the Lagrangian.

L(B, L., P, G, Lc', y, A) = -yBT LcB + Tr(G[AT P + PA - PBBTP + CTC1]-
Lc'[(.4 - BBTP)TLcI+ Lc'(A - BBTp) + CTC]) -

A(BTB-1),

where Y, A E iR and G = GT, Lc' = (Lc')' are the Lagrange multipliers which are not simul-
taneously zero. The closed loop observability Gramian Lc1 is defined by (5.28). The following
conditions are necessary for an extremum:

= AG + GAT - GPBBT - BBTPG - Lc'Lc'BBr - BBrLcILci =0

(5.31)

OL = (A - BBTP)LcI + Lc'(A - BBTP)T + 7BBT = 0, (5.32)

OL 2LoB 2PP -
OL = 2-tLcB - 2PGPB - 4PLc Lc'B - 2AB = 0 (5.33)

Since A - BBTp is stable with (Cl, A) detectable, -y = 0 implies Lc' - G 0 and A = 0 in
(5.32), (5.31) and (5.33) respectively. Hence, it can be assumed without loss of generality that
-Y = 1. Furthermore, Le is nonnegative definite.

Equations (5.26), (5.29)-(5.30) are thus obtained and (5.27) is equivalent to (5.14). From
(5.28) and (5.30) , we have

Tr(BBT Lc) = -2Tr(ALcLc) + 2Tr(LcPBBT L L)

= Tr(Lc'CT C) = CLeICT.

Q.E.D.
Remark 5.7: Since equations (5.23)-(5.25) and (5.26)-(5.30) are all coupled, they are

formidable, indeed. Their relative utility may be justified by the following two arguments. First,
these equations can be used to verify whether vector B optimal for an open loop system remains
optimal ;-i the closed loop environment. Section 5.5.5 below examines this relationship. Sec-
ondly, ite, ative procedures can be suggested for solving these equations (see below). Although
the convergence conditions for these procedures are presently unknown, it is easy to show that
they always generate sequences which contain convergent subsequences. Indeed, since the opti-
mization is performed over the compact set (B : BTB = 1), any sequence contains at least one
convergent subsequence [97].

The following iterative procedure was tested on several examples for solving equations (5.26)-
(5.30):

1) Choose a vector B(n), for n = 0 such that BT(n)B(n) = 1 (e.g. B(n) = [1 0 0 ... 0]T).

2) Solve the algebraic Ricatti equation (5.27) for n = 0 giving P(n).

3) Solve the Lyapunov equations (5.28) and (5.30) for n = 0 giving Lc'(n) and Lc'(n).

4) Solve the Lyapunov equation (5.29) for n = 0 giving G(n).
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5) Solve the eigenvalue equation (5.26) for n = 1 such that A(n) is the largest real eigenvalue
of L•' - PGP - 2PL•'Lc' and B(n) is the corresponding eigenvector.

6) Iterate steps (2), (3), (4), and (5) for n = 1,2,3,..., giving sequences {P(n)), {L'ý(n)),
{Lc'(n)}, {G(n)}, {A(n)}, and {B(n)}.

A similar iterative procedure for solving equations (5.23)-(5.25) is obtained by making the
appropriate modifications on the above algorithm.

5.5.5 RELATIONSHIP BETWEEN THE OPEN LOOP AND CLOSED LOOP H2-
OPTIMAL ZEROS

The H 2-optimal input vector B calculated according to Theorem 5 .1 for the open loop
environment may or may not be optimal in the closed loop case pertaining to Theorem 5.7.
Below we illustrate this assertion by two examples and formulate a conjecture as to when one or
another situation may take place.

Example 5.1: Consider the system (5.10) with A and C as follows:

A - [ -10000 (5.34)

C [01].

In this case, the open loop observability Gramian is

L 0= [ E 2.5E-03 '

and, therefore, vector Bo1 that achieves max uG112, where G(s) = C(sI - A)-1 B, is given by
IlBJI=1

Next, substituting (5.34) in equations (5.23)-(5.25), we calculate the vector B optimal in the
regulator problem. Let C1 = C, B1 = [1 1]T, and M = I. Invoking the iterative procedure
described in Section 5.5.4.2, we obtain

G [25.0122 0 ] [P 2.5E- 07 0]G=0 0.025 ' =0 2.5E -03 '

and, finally,

which was verified by performing an exhaustive search over the set {B: IIBBI = I}. Thus, in this
particular situation, the optimalopen loop B.* and the optimal closed loop Bct are the same.

Example 5.2: Consider again (5.10) with A and C given by

A 0 [ -2fl11 -3

C = [01],
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and Ci = C, M I. The open loop optimal B., for this case turns out to be

whereas the regulator problem results in

Bc,= 04384]
.1 = 0.8988]

K = [0.0347 0.1465]

Obviously, the two vectors B.* and Bci differ significantly. Note also that the zero of the triple
(A, B1 ,C1 ) is at -1 while that of the triple (A + B1tK/2, BI,CI) lies at -0.984.

Based on our experience in computing the optimal input vector B in open loop (Theorem
5.1) and closed loop (Theorem 5.7), we are led to the following conjecture.

Conjecture 5.1: When the LQR methodology is used to compute the feedback gain K in
the closed loop case, optimal vectors Bot and Bt are close to each other for system with "fast"
open-loop poles.

The reason behind such a conjecture is that for systems possessing open loop poles in the far
left half complex plane, the location of the closed loop poles will not be significantly different
from that of the open loop poles with a LQR controller. Hence optimal vector Bl obtained from
the open loop system dynamics will be close to that of Bit.

However, in general, in a closed loop system with a specified feedback co-' -oller, for maximum
H2-norm transmission from an exogeneous input to the output y, the choic,,. of the optimal input
vector must take into, onsideration the dynamics of the closed-loop system and not the open-loop
dynamics. To be more precise, the choice of the input vector B and the controller design should
be performed simultaneously as presented in Theorems 5.7 and 5.8.
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9 APPENDICES

APPENDIX Al: LEMMAS A.1-A.5

Lemma A.1: Let
in

P(A) Z: AA,

where A = {A,.... A,) is a set of self conjugate points in D(a.w). The function P achieves its
global maximum subject to the constraint

in

E Ai = a,Ei=a,

at A .; OD, i = 1,... ,m, where 8D denotes the boundary of D(a,w).

Proof: Consider a set of self conjugate points A = {AI,..., A,)}. Then

m/2 m/2

A,iAi= Z" (Re A,) 2 + (Imag A,)2 +4 E (Re A,)(Re Aj) (A.1)

where

whee Imag Ail :5t~ Aij (A.2)

From (A.1) and (A.2), it follows that max~eD(,w) P(A) is achieved at

IImag Ail jRe Aij

i.e. when A! E 9D, i = 1,..., m. Q.E.D.

Consider the optimization problem: For m even, and a 2 - 2 > 0, find a self conjugate set of
eigenvalues A = {A1,... ,A,} E D(a,w) such that

P(A) = E AA,, (A.3)

is maximized subject to
in

A = a < 0. (A.4)

Lemma A.2: The global solution A* = {A•,..., A1} of problem (A.3), (A.4) is given by

Ma= --(o +j,) , i = 1,...,m/2 , (A.5)
mo7

a

i = -W) , ,...,m/2 , (A.6)
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and

P(A-) = a ( ) ;2 (A\7)Q2m2

Proof: As a consequence of Lemma A.1, the global solution A of (A.3). subject to the
constraint (A.4), must have the form

Ai = ri((a+ jw) , ri1, i= 1,...,m/2,
./2+i = ri(o -jw) , i = 1.. m/

Therefore,
m

P(A) = AAj
,,jm1 mo
= 2 (2 W2)m/2 rr i ) 2( 8

2(oF,2 ,2(a8

and the constraint (A.4) reduces to
m/2 a

Eri= (A.9)
-- _ m/2

Since a2 W > 0, max P(A) is achieved at r which maximizes ,. r.

Define the set r = {rl,. ,r,/ 2 ). Since the constraint (A.9) is always regular, we apply the
Lagrange multiplier rule. The Lagrangrian is

m/2 m/2 a

L~~~r, ,, E irj- r

'<.2

The first order necessary conditions

aL(r,) 0
ar

HL(r, )
"-00

yield a linear system of equations whose solution is

ar , . . r ./2 = = - ,

together with

2-rm
2am

The second order conditions ensure that (A.5)-(A.6) is a strict maximum. Me-eover, since under
the constraint (A.9) the cost function (A.8) is
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II

quadratic, this maximum is the global maximum, and the proof is complete.
Q.E.D.

Consider the optimization problem : For M even, and a.2 - 2 < 0, find a self conjugate set
of eigenvalues A = {AE,...,AIE D(a. ..) such that

m

P(A) = Z i •,,, (A.10)
6<J

is maximized subject to
in

i=1

Ly emma A.3: The global solution AO = {AI,...,A,} of problem (A.10), (A.11) is givenby

*= (a + jw) , 1,...,m/2, (A.12)
A =/2+i r*(a.-jw), :=1,...,m/2, (A.13)

where

2 =F (-m-1) and r =1, i = 2,..., m/2. (A.14)

In addition,

P(A) (2 02) (2 C2)( (A. 15)

Proof: As a consequence of Lemma A.1, the global solution A of (A.10), subject to the
constraint (A.11), must have the form

Ai = ri(a+ jw) , ri _ 1m , i
Am/2+i = ri (a - jw) , im= ,...,rn2.

2 _ 2 .fn/2

Since a2 _ 2 < 0, and from (A.8), max P(A) is achieved at r which minimizes '.,.- rir,. Hence,

we need to determine the set r = {r,... r,/2} which minimizes

"'i/2P(r) = ri I
$<J

subject to the constraints

ri _ 1, i=1,...,m/2, (A.16)
m/2 rn

ri= •>_-. (A.17)

Since the constraints (A.16), (A.17) are regular, we apply the Karush-Kuhn-Tucker rule. The

Lagrangian is

Vn2 m/2 (M/2 a
L(r,yf)- x r~r, - "/'(ri- 1)-/ r

=o 81 6k -
5<)
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where the non-negative Lagrange multiplier p-- [PI"" U,,/2] satisfies pi(ri - 1) = 0. for all
i = 1,..., m/2. The first order necessary conditions yield a linear system of equations whose
solution generates a set of candidate extremal points given by

-l - k--- k
ri "-i 0• z"A(r

a= _ k'1, ikA(r), (A.1S)
2r, = 1 , /•L=, zE A(r) ,

2a M-k
2

where A(r) = {r : r = 1} is the set of active constraints and k < m denotes the number of active
constraints. It can be shown that

(J..LM)2
P(k)- P(k- 1)= 2a 2 < 02(m - k)(M + I - k)

Hence, among the candidate extremal points given by (A.18), the solution k = m/2 - 1 yields
the global minimum

a m

r = i = 2,.1..,m/2 ,

together with

17---1 ,
2

=0,2 2 a i=2,...,m/2.

The results (A.12)-(A.15) then follow immediately. Q.E.D.

Consider the optimization problem: For m even, and a 2 - w2 > 0, find a set of self conjugate
eigenvalues A = {Al,... ,A,.} E D(a,w) such that

'I'

P(A) = ] A•,A,, (A.19)
ijeO

is maximized subject to

Ao = ro , ro> 1 (A.20)

= a. (A.21)
iftiO

Lemma A.4: The global solution A* = {A*,...,A} of problem (A.19)-(A.21) is givenby

a - r0oaA: = (a +jw M 1, ... , m/2 ,
mo"(~j)

.X•/÷, - a - roa (ar Mj ),i= 1..r/
87o'

87



and

P(A') = ToO(a - roo) + ( a- roM)2 ( 1)02+W2)

Proof: From (A.20), the expression (A.19) can be expressed as:
in

P(A) = E AA,
6.)WO

= roa(a - rou) + ,AA. (A.22)
msuI!
,<J

Also the constraints (A.20) and (A.21) are equivalent to the following single
constraint:

S, = a - roa. (A.23)

Since the first term in the right hand side of (A.22) is constant, the solution of the optimization
problem (A.22), (A.23) is obtained from Lemma A.2. Q.E.D.

Consider the optimization problem : For m even, and a2 W w2 < 0, find a set of self conjugate
eigenvalues A = {A,,. . . , A,,} E D(o,w) such that

YR

P(A) = E AAj, (A.24)
s~jO

is maximized subject to

Ao = roa , roŽ1, (A.25)

Ai = a. (A.26)
i=O

Lemma A.5: The global solution A* {A;,..., AI} is given by

A! = r,(o+jw), i=l...,m/2, (A.27)
Aý/2+i = r'!(o- jw), i=1,...,m2, (A.28)

where
r• = 27r0 ( - 1) and r- 1, i = 2,..., m/2. (A.29)

In addition,

P(A') = ro°(a - rToo) + ( -2 or)(m-2) (m 2 - a -roor)

+ (W 2 + O2) (a )2 (A30)

Proof: The results (A.27)-(A.30) follow immediately from (A.22), (A.23), and Lemma
A.3. Q.E.D.
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APPENDIX A2: DERIVATION OF AVERAGED EQUATIONS FOR
HELICOPTER WITH VHHC

A2.1 AVERAGED EQUATIONS FOR HELICOPTER IN HC-.ER
Let x, = ,= 0,X3 = i,X 4 = 0. Equations (4.21) and (4.22) are equivalent to

1, 0 r0 0

000 0

i3 0 0 M -+Vf n =ý2rot10

1 U (m 1 4m 2 -- I Sin+ *3) m 2 1~l]( ~m 2 -w•m3I12 Igt *)

i0 01 a X30
X4

X -, 2 14 LC011 2 - kx,+.0s.nw- 3  + .sin,,w.).,- (')

-M2,,minX2 + OsinNwt - ,,M .,,-, +OURS, -- 7-.-.,)'" i)

X, X.) +. , 2X? X) .

The generating equation f20J for this case is

0 ]
a sin

(-I +mj-m2•sn 2 z2)
L -0 sin X. sin

d-r I(M 1+1112-?u2.1Y1
2
Z2)

where r = i/c.
We obtain the general solution of the above equation in the fast time r as

I =- Cl

2:2 = C2

-C( Cos 7

X3 = 2 + C3,
m, + m 2 - m 2 sin C2

asin z2 COS T
2:4 *'2 .r C

mI + M 2 - m 2 sin2 C2

where c,,i = 1,... ,4, are constants.
Conser -ntly, the substitution for this case is

2:1 Zi
I 2:2 Z2X2 Z2' + z h(r, z) ,

X3 MI +m.2-m min; ZZ
X4 j(,nj +M2 M i'm &m 2) "+r Z4

and the equation in Bogoliubov's standard form can be written as [20]:

-- = XdU,h(",z))

0 0 0
0 1 0 0

-2.is n s• n a aco o s i co 1 0 x

-2omrn
2 
sin 1 +rn2-mtun ÷-)
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10 0 0

0 1 0 0

0 0 i *m 2 -ns2 X

0 Visans
2  

+M2 -ml M )

C(ml+m 2 --m3 &and '2) lfJta(ist .+1112 -1992 it 2)

-acetos + Z3
SIn +m 2 -- M' Si3g '2

a s o n % C e 5 V + Z 4
A1 nui+m2 Vm, sin) 52 )ka

[ (cfins ) coo ' + 24

-- 7219 gin 22+ 0 sin Nw --i(tr • mi:l::'n;'n'ni2 i ) + )J)

Therefore, applying the averaging principle , we obtain equations (4.23) and (4.24) where

Ti-= zand 72 = .

A2.2 AVERAGED EQUATIONS FOR HELICOPTER IN FORWARD FLIGHT

Let X2 = , X2 = X3 0, X4 = , s= , Z 6 = . Equations (4.4)-(4.6) are equivalent to:

1 0 0 0 0 0
-zl0 1 0 0 0 0

-i2 0 0 1 0 0 0
*3• " 0 0 O m .m- -mV cs t *l z e X

.i5 0 0 0 m i SCO• 1!m-m**•#

LzJ L +

-M2tZ+ COSZ3 - kzX1 + aO COGoin Wt- C -4
-g in X(In2Anz- + 0iin N, gt -W9 ,

0
0
0

alpas (ms +m,-m, co*t .)m m,+m=, €. , a -c ,a .,,sim sin
KPoll SR+U-) 01)

sin81cAoomemLE)-% in(is

The generating equation for this case is:

. 0

a 1`m `M2 -m cm 2 Xza) COS 06YII2 Gin X3 CM X3Si A iD
S((ml +m2-m2.n2 mu+m) in n

X3- sin )s+m Sin+ X3 coO V3 coO , sin r
11M1(?l+I'2).

dr •c M -1 sinr

where r = t/c.
The general solution of the above equation is:

i - C1

X2 =C2

Z3 = C3
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((MI + m 2 - M 2 COs: C3) cOsIP + M 2 sin c 3 cos c 3 sin 'j COST + C4=4 -aM,(m + M2)

Xs = -Ck (M((i +m 2 - m 2 sin c3) sinp +m 2 sin c3 cOs C3 cOS( + ) rs + cs.

mI(rn1 + Mn2 )
(sin c3 cos COS C3 sincos r s/Iz•= ,) •cost + C6

where c•,i -= 1,... ,6, are constants.
The resulting substitution is

X23 Z2

X3 Z3

- (fMl+M2-m2COS Z3)€co#+m2sinx3 coox3 sines COS" + Z4

X51 ( (ml +m2-m2 sin2 z3) sin IA.,2Sin Z, cOs 2SPCS c +s
a(IrnZSCOSA+C Sm-) CMS +-O2X6 j sin z3 coos+cos z3sin A) COS '- +Z's

and the equation in Bogoliubov's standard form is [20]

1 0 0 0 0 0
0 1 0 0 0 0
00 1 0 0 0

- - i0 2x c #&-coo2az 3i 10i0 X
am 9 0 0 am2 , L CO 0 1 0 j "

0 0 o (Ai sl 2m SinJ-€s coo COS W•) coo r 0 1 0

100 0&OST 0 0 1

0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0wn 0W~.C* 0acal m Wa. +M% CO% aC4143 as" m Sin* Z"
l(! 1 ,, 911) s a(ms•.ln Z)1

0 (1(-3m+ma2) ~ =8_ 7 ex

0 0 0 f'csa•÷ -- % sin 3 Bit -COOsh
MCs061m +1(-+)3 + )2. + )n) mn

( (+mI M- --in 2 cs 2 23)1cos p +Pm2 sins% cos Ba sm inp + COST

-Z -,m,(m 1,+ in) < o.+,

((n (m + m2 -M2sin 3) sin p+ msin2 •,s &a coos ! coo r COST

=-- -ro(m 1 + m 2) & €" -ks

Upnaplin h a ing psin c23 + ,ip, Nwe - n (in ) co n s (4.31) where - =and

where

tI Z4 rQM + M2 M2 COS cos 3) COS P + M2 sin Z3 COS Z3 sin u)a cos r
MI(MI + M2)

t2 Z5 ((MIl + M2s -M2 sin 2 Z3) sin p + M2 sin z3 COS Z3 cos p)a• cos T
ts = zs -MIlrn + M2)

Upon applying the averaging principle, we ,'%tain equations (4.31) where Tj -z v, and
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